
Citation: Crescioli, C.; Paronetto, M.P.

The Emerging Role of

Phosphodiesterase 5 Inhibition in

Neurological Disorders: The State of

the Art. Cells 2024, 13, 1720. https://

doi.org/10.3390/cells13201720

Academic Editors: Luisa Alexandra

Meireles Pinto and Smaragdi

Antonopoulou

Received: 3 August 2024

Revised: 13 October 2024

Accepted: 15 October 2024

Published: 17 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

The Emerging Role of Phosphodiesterase 5 Inhibition in
Neurological Disorders: The State of the Art
Clara Crescioli 1,* and Maria Paola Paronetto 1,2,*

1 Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de
Bosis, 6, 00135 Rome, Italy

2 Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano,
64, 00143 Rome, Italy

* Correspondence: clara.crescioli@uniroma4.it (C.C.); mariapaola.paronetto@uniroma4.it (M.P.P.)

Abstract: Growing evidence suggests that neuroinflammation is not just a consequence of neurode-
generation in pathologies such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease
or Amyotrophic lateral sclerosis, but it is rather a determinant factor, which plays a pivotal role in
the onset and progression of these disorders. Neuroinflammation can affect cells and processes in
the central nervous system (CNS) as well as immune cells, and might precede protein aggregation,
which is a hallmark of the neurodegenerative process. Standard treatment methods are far from
being able to counteract inflammation and delay neurodegeneration. Remarkably, phosphodiesterase
5 inhibitors (PDE5is), which represent potent vasoactive drugs used as a first-line treatment for
erectile dysfunction (ED), display important anti-inflammatory effects through cyclic guanosine
monophosphate (cGMP) level stabilization. Since PDE5 hydrolyzes cGMP, several studies positioned
PDE5 as a therapeutic target, and more specifically, PDE5is as potential alternative strategies for the
treatment of a variety of neurological disorders. Indeed, PDE5is can limit neuroinflammation and
enhance synaptic plasticity, with beneficial effects on cognitive function and memory. The aim of
this review is to provide an overview of some of the main processes underlying neuroinflammation
and neurodegeneration which may be potential targets for PDE5is, focusing on sildenafil, the most
extensively studied. Current strategies using PDEis for the treatment of neurodegenerative diseases
will be summarized.
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1. Introduction

Phosphodiesterases (PDEs) represent a group of enzymes controlling many intracellu-
lar signals connected with the second messengers cyclic adenosine monophosphate (cAMP)
and cyclic guanosine monophosphate (cGMP) [1].

PDEs are expressed in all human tissues, and are sub-grouped into 11 subfamilies
which share the main catalytic function of hydrolyzing the 3′ cyclic phosphate bond of either
cAMP or cGMP, or both, but display different substrate specificities and intracellular local-
ization [1,2]. From the hydrolytic breakdown of cyclic adenosine monophosphate (cAMP)
and cyclic guanosine monophosphate (cGMP) into the biologically inactive derivates 5′-
AMP and 5′-GMP, respectively, PDEs can regulate many biological signals and functions.
Mammalian PDEs include distinct PDE isoforms generated through alternative pre-mRNA
splicing, multiple promoter usage and alternative transcription start sites in humans, rats
and mice.

PDEs are divided into three main categories: PDE4, PDE7 PDE8 which are specific
to cAMP hydrolysis; PDE5, PDE6 and PDE9 which are specific for cGMP hydrolysis; and
PDE1, PDE2, PDE3, PDE10 and PDE11 which have dual specificity for cAMP and cGMP.
Although exhibiting different affinities, PDEs share a common structural organization, with
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a conserved catalytic core of approximately 270 amino acids. The structural determinants
of isoform-dependent subcellular localization and specific interactions are located within
the PDE enzyme N-terminal region, which can be post-translationally modified to regulate
both enzymatic activity and localization in response to external and internal stimuli. Fur-
thermore, the N-terminal domains of PDE1, 4 and 5 also include dimerization domains and
autoinhibitory modules [3,4].

Thus, PDEs play a pivotal role in the regulation of many cellular functions because
of their ability to control intracellular levels of cAMP/cGMP together with the actions
of the adenylyl and guanylyl cyclases responsible for the synthesis of cAMP and cGMP.
Interestingly, beside the regulation of cyclic nucleotide content within the cells, PDEs can
drive single-cell responses to intra- and extracellular signals, establishing subcellular com-
partmentalization in nanodomains or individual pockets for cyclic nucleotide signaling [3].
A variety of factors, including tissue type, health/disease condition or aging, can affect
PDE location; this aspect should be further evaluated, especially when considering PDEs
as potential therapeutic targets [3–10]. Indeed, many companies have exploited the distinct
trait of PDEs to interfere with and regulate cell signaling, developing selective drugs target-
ing specific PDE types [11]. In fact, PDE dysfunction has been found to be associated with
or even precede several human diseases, such as cardiovascular diseases, infertility, cancer,
metabolic dysfunction, immunity and nervous system disorders [11]. Currently, highly
selective PDE5 inhibitors are available as therapies to treat different human diseases [3].
A few examples include selective inhibitors of PDE3, PDE4 and PDE5 which were the
earliest drugs approved by FDA for the treatment of some cardiovascular diseases (CVDs),
i.e., hypertension, thrombosis and thrombosis associated-complications and congestive
heart failure (CHF), whereas inhibitors of PDE2, PDE3, PDE4 and PDE10 have been ex-
ploited for neurodevelopmental disorders [2,3].

Considering PDE5 inhibitors’ (PDE5is) potent vasoactive effects, which result in
vasodilatation, PDE5is are now licensed for the treatment of ED and pulmonary artery
hypertension (PAH). In addition to these effects on the endothelium, PDE5is retain the
ability to control the growth/division/death of cells and, remarkably, display powerful
anti-inflammatory features. The latter aspect seems to be particularly relevant, considering
that chronic inflammation is acknowledged as the common link between most diseases.
The clinical exploitation of PDE5is may find a larger field of application in a wide-range of
inflammation-based human diseases, beyond ED [12].

In this scenario, neuroinflammatory diseases represent a growing area of investigation
and PDE5i exploitation. The aim of this review is to outline the state of the art and the
potentiality of PDE5i as therapeutic tools to control neuroinflammation and, consequently
neurodegenerative disorders in humans. Some of the main signaling processes involved
in neuroinflammation and neurodegeneration will be addressed as potential therapeutic
targets of PDE5is, focusing on sildenafil, the most promising molecule for neurological
disease treatment.

2. PDE5 and Its Specific Inhibitors

PDE5 is a metallo-hydrolase that catalyzes the conversion of cGMP to 5′ GMP and
controls different physiological activities within the body [13]. The PDE5A gene is located
on the human chromosome 4q26, contains 23 exons (approximately 100 kilobases), encoding
three alternatively spliced coding variants (PDE5A1-3), with different isoform-specific first
exons, driven by specific promoters in response to cGMP or cAMP stimulation [14]. PDE5’s
dimeric structure consists of two domains, GAF-A and GAF-B, which in concert control
PDE5 dimerization [15]. The cGMP binding sites, responsible for PDE5 affinity to cGMP,
are expressed in the GAF-A domain [13]. Following allosteric binding, cGMP is converted
into inactive 5′ GMP.

PDE5 is almost ubiquitously localized in human tissues, including visceral and vascu-
lar smooth muscle, corpora cavernosa, skeletal muscle, platelets, lungs, the brain, spinal
cord, kidneys, gastrointestinal tissue, prostate, bladder and urethra [14,16,17]. PDE5A1 and
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PDE5A2 are expressed in almost all human tissues, but PDE5A3 expression is present in
tissues with a smooth and cardiac muscle component [16].

The three PDE5A isoforms share the same cGMP-catalytic activities, expressing vari-
ations only in the N-terminal region, and are similarly inhibited by sildenafil [18]. As
previously addressed, cGMP is the primary target of PDE5; this second messenger engages
in many critical downstream effects, including the regulation of calcium homeostasis, va-
sodilation, retinal phototransduction and neurotransmission. cGMP synthesis is under
the control of the neurotransmitter nitric oxide (NO) through the activation of intracel-
lular soluble guanylyl cyclase (sGC), that, in turn, triggers the activity of downstream
cGMP-dependent protein kinases G (PKG) and ion channels, leading to a cascade of signals
involved in important physiological effects [19]. Since cGMP accumulation is acknowl-
edged as an inhibitory signal in inflammation, it is undeniable that this process represents
a potential tool to limit and control the initiation/development of several inflammation-
related diseases [20–23]. Chronic inflammation, also known as meta inflammation, is the
leading cause of several pathologies, like metabolic and cardiovascular diseases, cancer
and autoimmune and neurodegenerative disorders [24].

Concerning neurodegeneration, immune and neuroinflammatory mechanisms within
nervous cells are well documented to trigger/contribute to disease pathogenesis, by se-
creting and engaging a variety of inflammatory mediators, i.e., cytokines, chemokines,
and inflammation-related signaling paths [25]. That said, it is undeniable that PDE5 in-
hibition and, consequently, cGMP level stabilization are considered potential therapeutic
interventions in neurological disorders [26]. Thus, due to the critical interference of PDE5
with cGMP signaling, PDE5-induced cGMP targeting was proposed for the treatment
of several biomedical conditions, including neurological disorders, PAH, hypertension,
cardiomyopathy, cancer, ED, and lower urinary tract syndrome [27].

3. PDE5, PDE5i and Neuroinflammation

Chronic inflammation is a hallmark shared by a large group of neurodegenerative
disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic
lateral sclerosis (ALS), frontotemporal dementia (FTD) and Huntington’s disease (HD).
Inflammation might affect different areas of the central nervous system (CNS) involving
specific neuron subsets and different protein aggregates. It can be triggered by a variety
of noxious stimuli, i.e., toxic metabolites, head injuries, infections, or autoimmunity, and
plays a pivotal role in the progression of neurodegenerative disorders [28]. In physiolog-
ical conditions, the blood–brain barrier (BBB), the highly specialized brain endothelium,
maintains the neuronal microenvironment as optimally as possible to ensure the proper
functioning of synaptic transmission and remodeling, neuronal circuits, neurogenesis and
angiogenesis [29]. In physiological conditions, immune/inflammatory cells cross BBB
with specific biomolecular interactions at very slow rate, upon inflammation the traffic
of immunocytes, such as monocytes and T lymphocytes, and inflammatory mediators,
i.e., cytokines like tumor necrosis factor (TNF)α and IL1-β, increases and triggers BBB
impairments, perpetuating a vicious circle that allows neurodegeneration [30,31].

Growing evidence from clinical trials and experimental investigations shows that
the deregulation of the signaling pathway between nitric oxide (NO), cGMP and protein
kinase G (PKG) is tightly linked to neuroinflammation and neurodegeneration [32]. Indeed,
cGMP-dependent signaling plays important physiological roles in the CNS, participating
in neuronal survival, synaptic and cognitive function and the consolidation of memory [33].
I.e., cGMP stabilized levels through PDE5 inhibition, ameliorate neurogenesis via phos-
phoinositide 3-kinase (PI3K)/Akt pathway [34–36], which is engaged in synaptic plasticity.
Interestingly, the NO-induced stimulation of the soluble guanylate cyclase (sGC)–cGMP-
PKG pathway activates Akt and cyclic AMP-responsive element-binding protein (CREB);
both are signal-transducers of neurotrophins aimed to neuroprotection [37,38]. In ani-
mal models, higher cGMP levels downregulate pro-apoptotic signaling in favor of the
expression of anti-inflammatory signaling [39]. In progenitor cells of the retinal neuroglial,
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NO/cGMP/PKG retains antiapoptotic activity via Akt-CREB activation [40,41]. Moreover,
there is some evidence for the role of a PDE5/cGMP-dependent cascade in the development
of anxiety and depression, since cGMP levels are associated with inflammation, oxida-
tive stress, impaired resilience to stressors and neuroplasticity, all factors contributing to
neurological disorders [42,43].

Thus far, as the amount of second messengers within the cells is tightly regulated,
ranging from nanomolar to millimolar concentrations, the perturbance and dysregulation
of their production can lead to the dysfunction of or a disease within specific organs. In
the CNS, several types of cells, including microglia, astrocytes, oligodendrocytes are under
the regulation of PDE5-related signaling, as previously reported [28]. In this scenario,
considering that the human brain expresses PDE5, the use of PDE5is to control cGMP levels
retains the potential to be a therapeutic strategy against neuroinflammation and, therefore,
against neurodegeneration [28,44].

Among the selective PDE5is approved by the US Food and Drug Administration
(FDA) and by the European Medicines Agency, sildenafil, vardenafil, tadalafil and avanafil,
only sildenafil and tadalafil can directly cross the BBB (some indirect evidence exists for var-
denafil) [FDA, 1998. Viagra tablets (sildenafil citrate)] [45]. Indeed, sildenafil has emerged
as being promising for the treatment of neurological diseases, likely due to its improvement
of both vasculature and synaptic plasticity and neurogenesis [46,47]. Remarkably, besides
improvements in blood flow and angiogenesis, sildenafil can increase the number of new
synaptic connections and improve neurogenesis through cGMP/CREB, while decreas-
ing apoptosis; it can counteract the formation of protein aggregates involving Akt and
calpain/p25/cyclin-dependent kinase 5 (CDK5) pathways and hinder pro-inflammatory
processes by decreasing pro-inflammatory cytokines [28]. Furthermore, PDE5i-induced
increases in cGMP seem to reverse or restore the pathological cognitive signs of neurolog-
ical diseases in part, i.e., AD and HD [48,49]. Sildenafil can counteract the formation of
amyloid β (Aβ) plaques and protein aggregation increasing Akt, which, upon phospho-
rylation, inhibits GSK3β, which is involved in Aβ plaque deposition [50]. Interestingly,
the decrease in proteins like glycogen synthase kinase 3 beta (GSK3β) or CDK5, the most
relevant kinases engaged in Alzheimer’s disease pathogenesis, reduces the phosphory-
lation of the microtubule-binding protein tau, likely contributing to cognitive function
restoration [51,52]. As has been found from studies in experimental autoimmune en-
cephalomyelitis (EAE) models resembling multiple sclerosis (MS), sildenafil can reduce
disease-associated clinical symptoms in association with a decrease in the levels of inflam-
matory cytokines, such as IL-1β, TNFα, and IL-17, involved in neuroinflammation and
disease pathogenesis, such as IL-1β, TNFα, and IL-17, likely through the direct targeting of
nuclear factor kB (NFkB) [20]. The overall effect induced by sildenafil that emerged in the
MS experimental models can be described as a significant downregulation of the subset
T helpers, (Th)1 (CD4+), which are critical for disease initiation and maintenance, and
Th17, which are the main cells responsible for persistent inflammation and are the source
of IL-17 which is highly expressed in blood, cerebrospinal fluid and local CNS lesions in
MS patients [53–57]. To date, sildenafil can act against neuroinflammation by regulating
the subset of Treg cells (Foxp3+) that limits the immune over response, by upregulating
the expression of inhibitory cytokines, such as TGF-β and IL-10, and enhancing myeliniza-
tion and synaptic plasticity through the brain-derived neurotrophic factor (BDNF) that is
essential for neuron survival and cytoskeletal rearrangement [58].

4. PDE5 and PDE5i in the Establishment and Progression of Neurodegenerative Diseases

Intracellular signaling cascades of cyclic nucleotides are involved in multiple essential
functions, including neuron specification and polarization as well as the establishment
of the neuronal circuitries required for synaptic plasticity and for the accomplishment of
neuromuscular and cognitive functions [59]. Impairments in these processes contribute to
the development of several neurodegenerative diseases, including AD, HD, and PD.
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A fine-tuned regulation of cyclic nucleotides synthesis and hydrolysis, mediated by
temporal and spatial features and achieved by more than 40 PDE isoforms, with different
expression patterns and localization, offers a wide range of combinations of output signals
to, in turn, adapt the specificity of response to distinct stimuli, shaping neuronal complexity
and plasticity [60]. Thus, distinct PDE intracellular localization, kinetics and regulatory
mechanisms enable the translation of a wide range of signals. As mentioned, subcellular
compartmentalization of PDE enzymes represents a key step towards simultaneously gener-
ating multiple and contiguous cyclic nucleotides messages, shaping cellular microdomains.
An additional layer of complexity is ensured by local interactions between cAMP and
cGMP, which determine neurite maturation into axon or dendrite. The local ratio between
cAMP and cGMP contributes to axonogenesis (with higher cAMP and lower cGMP) and
dentritogenesis (with higher cGMP and lower cAMP). In developing neurons, the choice of
the expression of excitatory or inhibitory neurotransmitter is modulated by the frequency
of calcium spikes, which in turn are guided by cyclic nucleotides transients and by the
activity of a set of effector kinases [61]. Hence, cAMP transients and calcium spikes are
interdependent. In this way, the spatiotemporal dynamics of cyclic nucleotides determine,
in time and space, neuronal polarization and neurotransmitter specification [62]. The
dynamic function of PDE could also be achieved through its peculiar localization, i.e., the
PDE5 protein is highly expressed in the cytoplasm of neuronal cells in human brains [44];
however, in the cortex and hippocampus, PDE5 is mostly expressed in pyramidal neu-
rons, whereas in the cerebellum, it is prominently expressed in Purkinje neurons [44].
Figure 1 depicts the main mechanisms involved in PDE5-induced signaling cascade within
neuronal cells.
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Figure 1. PDE inhibition contributes to cell survival and memory improvement via the modulation of
NO signaling. NO, produced by NOS, leads to the activation of sGC and production of cGMP, which
in turn activates PKG [63,64]. (A). Retrograde signaling of NO can promote the release of vesicles
containing neurotransmitters in presynaptic neurons. (B). PKG also promotes cell survival via the
AKT pathway. (C). PKG activation leads to CREB phosphorylation and the expression of memory-
related genes. CaMKII: Ca2+/calmodulin-dependent protein kinase II; cGMP: cyclic guanosine
monophosphate; CREB: cAMP response element-binding element; NMDAR: N-methyl-D-aspartate
receptor; NO: nitric oxide; NOS: nitric oxide synthase; PI3k: phosphatidylinositol 3-kinase; PDE:
phosphodiesterase; PKG: protein kinase G; sGC: soluble guanylate cyclase.

In the following paragraphs we will describe and discuss the involvement of PDE5
activity in the onset and progression of neurodegenerative diseases, opening the path
towards the development of PDEi as a valuable therapeutic opportunity.
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4.1. PDE5i in Alzheimer’s Disease

AD is the most common form of dementia among the elderly. In AD patients, memory
loss is accompanied by the formation of beta-amyloid plaques and the appearance of
neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau fibrils, which hamper
proper neuronal functioning [65]. To date, several therapeutic approaches have been
developed, including drugs inhibiting acetylcholinesterase (AChE) or antagonizing N-
methyl-D-aspartate (NMDA), in addition to therapies aimed at inhibiting NFTs formation,
interfering with tau protein function, thus decreasing Aβ load in the brain, inflammation
and oxidative damage.

The failure of these strategies led researchers to focus on other non-amyloid-based
approaches to restore memory function. In this context, promising candidates include PDEs.
Interestingly, specific PDEis can improve memory performance in different AD animal
models. In particular, the ability of PDE5i to interfere with the NO/cGMP/PKG/CREB
signaling pathway by increasing the levels of cGMP has prompted the hypothesis that
PDE5 inhibition might represent an effective therapeutic approach for the treatment of
AD. Accordingly, the cGMP signaling path has been documented to play a pivotal role
in cognition and memory function and represented a primary target in a trial using
PDEi [66–68].

NO is a small gaseous molecule produced by the nitric oxide synthase (NOS) enzyme in
L-arginine metabolism. NO can diffuse through cell membranes and participates in a wide
range of physiological functions, including vasodilation, inflammation, neuroprotection,
neurotoxicity and synaptic transmission. In the central nervous system (CNS), NO works as
a neurotransmitter, going from the post-synaptic to the pre-synaptic neuron as a retrograde
messenger. As mentioned above, the binding of NO to sGC stimulates the production
of the second messenger cGMP, which activates its downstream effector PKG and the
transcription factor cAMP-response element-binding element (CREB), thus promoting
neurotransmission, synaptic plasticity and memory formation [69]. PKG also mediates
neuroprotection via the inhibition of apoptosis throughout activation of the PI3K/Akt
signaling pathway [70]. NO can also trigger the release of neurotransmitters, such as
glutamate, at pre-synaptic neurons via activation of the sGC/cGMP/PKG pathway [71]
(Figure 1). Furthermore, by achieving the S-nitrosylation of nuclear proteins, NO can also
promote the binding of CREB to the DNA of target genes [38]. Upon nitrosylation, caspase
enzymes and the N-methyl-D-aspartate receptor (NMDAR) reduce their activity, thus
contributing to neuroprotection, whereas excessive NMDAR activity leads to abnormal
intracellular Ca2+ levels and excitotoxicity [72].

Consistent with its neuroprotective function, the activation of NO signaling amelio-
rates altered neuroplasticity and memory deficits in animal models of AD [73]. Furthermore,
in AD brains, a decreased phosphorylation level of CREB is observed, in line with the
formation of Aβ and tau oligomers [63]. Notably, the reduction in pCREB phosphroylation
correlates with reduced neuronal plasticity and memory formation, corroborating the link
between impaired memory and NO signaling. In line with these observations, activation
of the NO/sGC/cGMP/PKG/CREB pathway is sufficient to rescue Aβ or tau pathology
and restore pCREB levels [46,73]. Remarkably, PDEis reproduce this pathway, ameliorating
memory deficits.

The PDE5i zaprinastat, which also targets PDE6, PDE9 and PDE11, was the first to
show improvements in cognitive functions in animals [74]. Sildenafil also showed im-
provements in recognition and spatial memory in both mice and rats [75–77]. Sildenafil
treatment was shown to restore CREB phosphorylation in aged mice. Chronic administra-
tion of sildenafil in a 3-month-old transgenic APP/PS1 mouse model of AD could prevent
cognitive deficits and synaptic dysfunction, at least in part by modulating the activity of
CREB [50]. Interestingly, sildenafil treatment also diminished hippocampal Aβ levels. In
addition, the administration of sildenafil to hippocampal slices reversed the impairment of
LTP in the APP/PS1 mice [50,52]. Similarly, promising results were obtained in monkeys,
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clearly demonstrating that sildenafil can improve cognitive function in a dose dependent
fashion [78].

Analogous results were obtained using other PDE5i, such as vardenafil and
tadalafil [45,50,79]. Acute treatment with vardenafil was shown to improve spatial mem-
ory [80] and long-term memory performance [79]. Moreover, tadalafil was shown to reverse
LTP reduction in slices of brain in an APP/PS1 mouse model of AD, but failed to achieve be-
havioral benefits when administered in vivo, probably due its poor BBB penetration [50,81].
Most recently, other PDE5is, such as icariin, yonkenafil, compound 7a and compound 6c,
were developed specifically for their therapeutic potential in learning and memory. Icariin
showed a strong beneficial effect against memory loss in APP/PS1 transgenic mice [82].
Treatment of APP/PS1 mice with yonkenafil improved working memory deficits. Moreover,
yonkenafil was able to reduce the Aβ plaque area and to inhibit the over-activation of
microglia and astrocytes, simultaneously increasing neurogenesis in the dentate gyrus [83].
Compound 7a was shown to improve contextual and spatial memory in mice pre-treated
with Aβ or tau oligomers, and in APP/PS1 mice. At the molecular level, increased cGMP
and pCREB levels were observed in the hippocampi of AD mice [73,84]. By optimizing
compound 7a, the compound 6c was developed, which demonstrated an ability to restore
learning capacity and memory in the APP/PS1 transgenic mice [85] as well as improvement
of synaptic plasticity in hippocampal slices. The in vivo administration of compound 6c
demonstrated positive behavioral outcomes [85]. These pre-clinical studies have been
summarized in Table 1.

Table 1. Pre-clinical studies evaluating PDE5 inhibitors in neurodegenerative diseases.

PDE5 Inhibitor Animal Models Results Reference

Tadalafil 3-month-old J20 transgenic mice Improved memory performance [45]

Sildenafil
Double transgenic mice expressing both

the human APP and PS1 mutations
compared with wild-type littermates

amelioration of synaptic function,
CREB phosphorylation, and memory [50]

Zaprinast 3-month-old Tryon–Maze–Bright rats improved memory consolidation [74]

Sildenafil 6-month-old Swiss mice improved memory consolidation [75]

Sildenafil 2-month-old Swiss mice Improved performance [77]

Sildenafil Cynomolgus macaque improved object retrieval performance [78]

Vardenafil 4–5-month-old mice Improved spatial memory acquisition
and early consolidation [80]

Yonkenafil
Double transgenic mice expressing both

the human APP and PS1 mutations
compared with wild-type littermates

Rescue of cognitive deficits and
amelioration of amyloid burden [83]

Compound 7a
Double transgenic mice expressing both

the human APP and PS1 mutations
compared with wild-type littermates

Increased level of cGMP in mouse
hippocampus and amelioration in

synaptic plasticity and memory
[84]

Compound 6c
Double transgenic mice expressing both

the human APP and PS1 mutations
compared with wild-type littermates

Increased level of cGMP in mouse
hippocampus and amelioration in

synaptic plasticity and memory
[85]

Several studies document that the memory improvement obtained with PDEis [50]
was not related to their effects on blood flow [86]; consistently, intracerebroventricular
administration of vardenafil was sufficient to ameliorate memory functions [87]. Never-
theless, it cannot be excluded that PDEi might enhance cognition also through vascular
mechanisms [45].

Altogether, these reported findings strongly suggest the possibility of using PDE5is to
enhance normal memory and age-related memory decline. However, despite the positive
results obtained in pre-clinical protocols, the memory improvements from PDE5is observed
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in animal studies were not translated into clinical settings [88]. To date, none of the inves-
tigated drugs have reached the market for AD treatment. In fact, PDEi administration in
humans has shown a wide variety of results, ranging from no effect to a beneficial effect on
normal memory. Sildenafil administration to healthy volunteers [89] showed no significant
effects on short-term memory [90], although it was demonstrated to enhance the ability
to focus attention, select relevant target stimuli and improve information processing [90].
The NCT01940952 clinical trial was proposed to determine whether Zydena (Udenafil) had
a positive effect on cognitive function in patients with AD (Table 2). The results obtained
have not been disclosed yet.

Table 2. Ongoing clinical trials evaluating PDE5 inhibitors in neurodegenerative diseases.

NCT Number Study Title Conditions Interventions

NCT02162979 Sildenafil (Viagra) for the Treatment
of Dyskinesias in Parkinson’s Disease Parkinson’s Disease Sildenafil, Placebo

NCT01940952
Zydena on Cognitive Function of

Alzheimer’s
Disease Patients

Alzheimer’s Disease Zydena (Udenafil) + Donepezil,
Placebo + Donepezil

NCT01941732 Motor Response to Sildenafil in PD Parkinson’s Disease|Erectile
Dysfunction Sildenafil

NCT02225548
data Sagene 2014—Parkinson’s

Disease and
Erectile Dysfunction

Parkinson’s Disease|Erectile
Dysfunction

Selegiline,
Tadalafil

4.2. PDE5i in Parkinson’s Disease

PD is a progressive disorder that occurs in later life, defined clinically by motor
features and pathologically by neuronal degeneration and intraneuronal misfolded α-
synuclein (Lewy bodies) in specific central and peripheral nervous system regions, includ-
ing dopaminergic brain-stem neurons [91]. PD patients exhibit classic motor symptoms
(e.g., asymmetric bradykinesia, rigidity, tremor, and imbalance) and cognitive deficits,
particularly in the later stages of the disease [91].

To date, no therapy has been proved to slow disease progression. Although dopamin-
ergic therapies can improve motor function, a loss of efficacy is frequently observed and
several side effects have been documented [91]. However, regular exercise, a healthy diet,
high-quality sleep and avoidance of adverse exposures have been associated with reduced
mortality [92].

Interestingly, a reduced risk of PD was correlated with a high consumption of caffeine,
which is able to increase cAMP and cGMP by inhibiting PDEs [93], suggesting increased
PDE activity as a driver of PD. Nevertheless, neither mutations or reduced expression of
PDE4D [94], PDE8B [95] or PDE10A [96] were shown in PD patients.

Remarkably, increased cyclic nucleotide signaling was shown in PD patients after
pharmacological and electrophysiological therapies. Deep brain stimulation (DBS) of
the subthalamic nucleus (STN), which is currently used to treat PD patients, transiently
increases cGMP signaling in the striatum [97,98]. Furthermore, a reduced NOS expression
in the striatum of PD patients was documented, potentially contributing to the decrease in
cGMP production via sGCs [99].

An increase in neuronal NOS expression and activity was observed in PD patients,
leading to an overproduction of NO and increased levels of cGMP from GC activation [100].
L-DOPA therapy, which can restore dopamine levels in PD patients, also increases cGMP
levels in the serum and CSF of PD patients [100,101].

Animal models of PD can be created by using 6-hydroxydopamine (6-OHDA) or
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to achieve lesions in dopaminergic
neurons in the substantia nigra, which reduce cGMP in the striatum and globus pallidus
(GP), and increase cAMP in the striatum [102–104]. Reduced NOS activity [104] leads to
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lower levels of NO and a reduced activation of sGC. However, the downregulation of
cGMP by 6-OHDA may account for the increase in PDE1B expression [103,104], whereas
the increase in cAMP could be due to the downregulation of PDE10A expression [103],
which also occurs in PD patients [96]. Notably, different results were obtained using the two
models: while 6-OHDA reduced NOS activity, MPTP treatment enhanced NOS expression
and activity, thus increasing sGC, and, as a consequence, the cGMP levels in striatum
and midbrain [105–107]. Importantly, MPTP-induced deficits were reversed by the PDE1
inhibitor vinpocetine [107,108] and by the PDE4 inhibitor rolipram [109].

Several clinical trials have been undertaken to evaluate the effectiveness of PDE5
inhibition as a therapeutic opportunity for the treatment of PD (Table 2). The NCT02162979
study is trying to determine whether sildenafil is effective in reducing dyskinesias in
patients with PD, whereas the NCT01941732 trial is evaluating motor function and cerebral
blood flow (CBF) in PD patients before and after sildenafil intake and before and after
anti-PD medication, since a number of patients have reported that when they take sildenafil,
their need for anti-PD medication is reduced. The rationale of this trial resides in the role
of sildenafil in increasing brain blood flow, hence improving the function of specific brain
regions, ameliorating motor function. Lastly, the purpose of the NCT02225548 study is to
evaluate whether selegiline and tadalafil can improve erectile dysfunction (ED) in male
patients with Parkinson’s disease (PD) and moderate ED. Selegiline acts as a monoamine
oxidase inhibitor (MAOI) and thereby increases levels of monoamine neurotransmitters
in the brain [110]. It is prescribed to PD patients that are taking carbidopa/levodopa who
are not receiving the complete benefits of carbidopa/levodopa. Nevertheless, the results
obtained from these studies have not been disclosed yet.

4.3. PDE5i in Huntington’s Disease

HD is an autosomal-dominant progressive neurodegenerative disorder associated with
the expansion of CAG/polyglutamine repeats in the Huntingtin gene, primarily causing
the degeneration of striatal neurons, and involving additional neuronal populations, such
as cortical and hippocampal neurons. This scenario leads to depression and cognitive
dysfunction, preceding the motor deficits [111].

Several reports document altered cAMP signaling in the striatum, hippocampus and
cortex of HD patients and animal models of the disease [112]. This could be due to a
reduced degradation of the PDE4 protein and a concomitant increase in PDE4 activity,
driving the depression-like phenotypes, but not the motoric phenotypes, seen in HD mouse
models [113].

Furthermore, HD mouse models also show reduced cGMP levels in the hippocampus,
possibly due to a loss of nNOS signaling, that could contribute to the decrease in the
NO-stimulated sGC activity [114]. Altered cAMP and cGMP levels drive the compensatory
decreases in the expression of PDE10A and PDE1B [115,116], as documented in both HD
patients [116–118] and animal models [115,116,119]. Remarkably, PDE10A inhibitors can
reduce behavioral, neurodegenerative, and electrophysiological deficits in HD animal
models [111,115,120], possibly via increasing pCREB in striatum, cortex and hippocampus
in both HD patients and animal models [121].

Regarding PDE5, it was demonstrated that sildenafil and vardanafil had neuropro-
tective roles against the mycotoxin 3-nitropropionic acid (3-NP), and were able to induce
behavioral and biochemical abnormalities by inhibiting the succinate dehydrogenase (SDH)
activity, thus resulting in mitochondrial dysfunction and cellular energy deficits, and pro-
ducing striatal lesions closely mimicking the neuropathological features of HD [122]. Both
sildenafil and vardanafil, as well as the PDE4 inhibitor RO 20-1724, significantly attenuated
3-NP induced neurotoxicity [123]. The molecular mechanism relies on the inhibition of
calpain activation, and on the increase in p-CREB and BDNF levels [124]. In line with
these positive results, the PDE5is sildenafil and tadalafil were shown to reduce the levels
of the mutant Huntingtin and tau proteins in zebrafish models of tauopathies or HD via
the regulation of protein ubiquitination and overall protein degradation through PKG
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phosphorylation and activation [125]. These findings highlight the therapeutic potential
of treatments which raise cGMP to counteract different proteotoxic diseases, including
cardiac failure and ischemia [126], via the PKG’s ability to enhance global protein degrada-
tion [127]. Overall, the activation of PKG could represent a promising therapeutic strategy
to counteract untreatable proteotoxic diseases.

5. Conclusions

There is growing evidence showing that neuroinflammation is a trigger for neurode-
generative disease initiation and progression, and not merely a consequence. Acting on
inflammatory processes preceding neurological disease could be a useful approach to
limit neurodegeneration. Different anti-inflammatory strategies failed to delay disease
progression in clinical trials, likely due to the complex role of inflammatory signaling
in neurodegenerative processes, displaying at the same time beneficial and detrimental
effects [25]. Nevertheless, in this scenario, the inhibition of PDE5 activity emerges to retain
its potential as a safe and beneficial strategy in neurological diseases. Sildenafil seems to
be a promising approach, thanks to its multi-dimensional improvement on vasculature,
synaptic plasticity and neurogenesis.

As previously addressed, sildenafil is the most studied and promising molecule due
to its ability to cross the BBB. As seen in studies in mice and rats, tadalafil can ameliorate
neurorepair and neurological performance (i.e., object recognition task), suggesting some
central beneficial effects [128], despite its poor penetration into the BBB. Independently
from the drug’s ability to cross BBB, many studies refer to the increase in CBF induced by
PDE5is as potential treatment to ameliorate vascular cognitive impairment, characterized by
reduced CBF. Remarkably, the middle cerebral artery’s flow velocity, which is mostly used to
estimate CBF, has shown improved cerebral responsiveness after PDE5i treatment [128]. So
far, it seems that the benefit likely relies on the improved responsiveness of the vasculature
and, presumably, on some released mediators being able to cross the BBB.

It is mandatory to underline the paucity of research studies and the high variability
that exists in the quality of data due to different protocols for intervention, route of admin-
istration or outcome measures. In addition, most of the studies are performed on animal
models, and are not immediately ascribable to humans.

Previous studies on other diseases show that sildenafil can counteract inflammation
by interfering with inflammatory molecules and signaling at either the local or systemic
level, and this can be an undeniable advantage [129–131]; furthermore, it has been proven
to be a safe drug licensed for ED and pulmonary hypertension.

Based on this observation, PDE5 inhibition could have clinical relevance in other
diseases in which counteracting inflammatory and (auto)immune over response could
be a promising therapeutic approach [12,132]. This is the case of PDE5i proposed as
treatment options for cardiomyopathy or cancer (and also as sparing-agents) due to their off-
target effect to interfere with aberrant signals [133–137]. For example, tadalafil has a label
indication for the treatment of benign prostatic hyperplasia (BPH) [138]. It is noteworthy
that PDE5is, in addition to their label indication for PAH in Systemic Sclerosis (SSc), are
currently given off-label for pulmonary hypertension secondary to other rheumatologic
diseases, and for Raynaud phenomenon or digital ulcers in SSc [139]. So far, PDE5is retain
their potentiality as disease-modifying agents due to their broader spectrum of molecular
interactions and multi-target effects.

To date, none of the PDE5 inhibitors is totally selective, and the cross-reactivity with
other PDE isoenzymes is likely the reason for many of the negative effects caused by these
drugs [140]. Indeed, PDE5i administration should be carefully evaluated since there are
data reported on some non-negligible side effects, including melanoma, altered vision
and optic neuropathy, altered blood pressure, prostate cancer, dyspepsia, back pain and
myalgia, headaches, flushing, priapism, rhinitis and hearing loss [140].

In this scenario, it is undeniable that a more exhaustive and deeper understanding of
the cellular/molecular mechanisms underlying neuroinflammation and neurodegeneration
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will be a step forward in individuating target(s) and subjects for the safe treatment of
neurodegenerative diseases. Large-scale studies and trials are mandatory, as well as trans-
lational research in humans to support the PDE5is’ potential as treatments for neurological
disorders, likely in the view of precision, personalized medicine.
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Parkinson’s disease patients with and without cardiovascular disease—A pilot study. Parkinsonism Relat. Disord. 2011, 17, 689–692.
[CrossRef]

101. Navarro, J.A.; Jiménez-Jiménez, F.J.; Molina, J.A.; Benito-León, J.; Cisneros, E.; Gasalla, T.; Ortí-Pareja, M.; Tallón-Barranco, A.; de
Bustos, F.; Arenas, J. Cerebrospinal fluid cyclic guanosine 3′5′ monophosphate levels in Parkinson’s disease. J. Neurol. Sci. 1998,
155, 92–94. [CrossRef]

102. Giorgi, M.; D’Angelo, V.; Esposito, Z.; Nuccetelli, V.; Sorge, R.; Martorana, A.; Stefani, A.; Bernardi, G.; Sancesario, G. Lowered
cAMP and cGMP signalling in the brain during levodopa-induced dyskinesias in hemiparkinsonian rats: New aspects in the
pathogenetic mechanisms. Eur. J. Neurosci. 2008, 28, 941–950. [CrossRef]

103. Sancesario, G.; Morrone, L.A.; D’Angelo, V.; Castelli, V.; Ferrazzoli, D.; Sica, F.; Martorana, A.; Sorge, R.; Cavaliere, F.; Bernardi, G.;
et al. Levodopa-induced dyskinesias are associated with transient down-regulation of cAMP and cGMP in the caudate-putamen
of hemiparkinsonian rats: Reduced synthesis or increased catabolism? Neurochem. Int. 2014, 79, 44–56. [CrossRef]

104. Barthwal, M.K.; Srivastava, N.; Dikshit, M. Role of nitric oxide in a progressive neurodegeneration model of Parkinson’s disease
in the rat. Redox Rep. 2001, 6, 297–302. [CrossRef] [PubMed]

105. Chalimoniuk, M.; Langfort, J. The effect of subchronic, intermittent L-DOPA treatment on neuronal nitric oxide synthase and
soluble guanylyl cyclase expression and activity in the striatum and midbrain of normal and MPTP-treated mice. Neurochem. Int.
2007, 50, 821–833. [CrossRef] [PubMed]

106. Chalimoniuk, M.; Langfort, J.; Lukacova, N.; Marsala, J. Upregulation of guanylyl cyclase expression and activity in striatum of
MPTP-induced parkinsonism in mice. Biochem. Biophys. Res. Commun. 2004, 324, 118–126. [CrossRef] [PubMed]

107. Kelly, M.P. Cyclic nucleotide signaling changes associated with normal aging and age-related diseases of the brain. Cell. Signal.
2018, 42, 281–291. [CrossRef]

108. Sharma, S.; Deshmukh, R. Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats.
Neuroscience 2015, 286, 393–403. [CrossRef] [PubMed]

109. Yang, L.; Calingasan, N.Y.; Lorenzo, B.J.; Beal, M.F. Attenuation of MPTP neurotoxicity by rolipram, a specific inhibitor of
phosphodiesterase IV. Exp. Neurol. 2008, 211, 311–314. [CrossRef]

110. Magyar, K. The pharmacology of selegiline. Int. Rev. Neurobiol. 2011, 100, 65–84. [CrossRef]
111. Giralt, A.; Saavedra, A.; Alberch, J.; Pérez-Navarro, E. Cognitive Dysfunction in Huntington’s Disease: Humans, Mouse Models

and Molecular Mechanisms. J. Huntington’s Dis. 2012, 1, 155–173. [CrossRef]
112. Gines, S.; Seong, I.S.; Fossale, E.; Ivanova, E.; Trettel, F.; Gusella, J.F.; Wheeler, V.C.; Persichetti, F.; MacDonald, M.E. Specific

progressive cAMP reduction implicates energy deficit in presymptomatic Huntington’s disease knock-in mice. Hum. Mol. Genet.
2003, 12, 497–508. [CrossRef]

113. Tanaka, M.; Ishizuka, K.; Nekooki-Machida, Y.; Endo, R.; Takashima, N.; Sasaki, H.; Komi, Y.; Gathercole, A.; Huston, E.; Ishii, K.;
et al. Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington’s disease. J. Clin. Investig. 2017,
127, 1438–1450. [CrossRef]

114. Saavedra, A.; Giralt, A.; Arumí, H.; Alberch, J.; Pérez-Navarro, E. Regulation of hippocampal cGMP levels as a candidate to treat
cognitive deficits in Huntington’s disease. PLoS ONE 2013, 8, e73664. [CrossRef] [PubMed]

115. Beaumont, V.; Zhong, S.; Lin, H.; Xu, W.; Bradaia, A.; Steidl, E.; Gleyzes, M.; Wadel, K.; Buisson, B.; Padovan-Neto, F.E.; et al.
Phosphodiesterase 10A Inhibition Improves Cortico-Basal Ganglia Function in Huntington’s Disease Models. Neuron 2016, 92,
1220–1237. [CrossRef] [PubMed]

116. Hebb, A.L.; Robertson, H.A.; Denovan-Wright, E.M. Striatal phosphodiesterase mRNA and protein levels are reduced in
Huntington’s disease transgenic mice prior to the onset of motor symptoms. Neuroscience 2004, 123, 967–981. [CrossRef] [PubMed]

117. Wilson, H.; Niccolini, F.; Haider, S.; Marques, T.R.; Pagano, G.; Coello, C.; Natesan, S.; Kapur, S.; Rabiner, E.A.; Gunn, R.N.; et al.
Loss of extra-striatal phosphodiesterase 10A expression in early premanifest Huntington’s disease gene carriers. J. Neurol. Sci.
2016, 368, 243–248. [CrossRef] [PubMed]

118. Russell, D.S.; Barret, O.; Jennings, D.L.; Friedman, J.H.; Tamagnan, G.D.; Thomae, D.; Alagille, D.; Morley, T.J.; Papin, C.;
Papapetropoulos, S.; et al. The phosphodiesterase 10 positron emission tomography tracer, [18F]MNI-659, as a novel biomarker
for early Huntington disease. JAMA Neurol. 2014, 71, 1520–1528. [CrossRef]

119. Leuti, A.; Laurenti, D.; Giampà, C.; Montagna, E.; Dato, C.; Anzilotti, S.; Melone, M.A.; Bernardi, G.; Fusco, F.R. Phosphodiesterase
10A (PDE10A) localization in the R6/2 mouse model of Huntington’s disease. Neurobiol. Dis. 2013, 52, 104–116. [CrossRef]

https://doi.org/10.1093/brain/awv219
https://www.ncbi.nlm.nih.gov/pubmed/26210536
https://doi.org/10.1111/j.1460-9568.2006.04816.x
https://www.ncbi.nlm.nih.gov/pubmed/16819981
https://doi.org/10.1007/978-3-211-45295-0_60
https://doi.org/10.1007/BF02260966
https://doi.org/10.1016/j.parkreldis.2011.07.003
https://doi.org/10.1016/S0022-510X(97)00267-0
https://doi.org/10.1111/j.1460-9568.2008.06387.x
https://doi.org/10.1016/j.neuint.2014.10.004
https://doi.org/10.1179/135100001101536436
https://www.ncbi.nlm.nih.gov/pubmed/11778847
https://doi.org/10.1016/j.neuint.2007.02.002
https://www.ncbi.nlm.nih.gov/pubmed/17379358
https://doi.org/10.1016/j.bbrc.2004.09.028
https://www.ncbi.nlm.nih.gov/pubmed/15464991
https://doi.org/10.1016/j.cellsig.2017.11.004
https://doi.org/10.1016/j.neuroscience.2014.12.008
https://www.ncbi.nlm.nih.gov/pubmed/25514048
https://doi.org/10.1016/j.expneurol.2007.02.010
https://doi.org/10.1016/B978-0-12-386467-3.00004-2
https://doi.org/10.3233/JHD-120023
https://doi.org/10.1093/hmg/ddg046
https://doi.org/10.1172/JCI85594
https://doi.org/10.1371/journal.pone.0073664
https://www.ncbi.nlm.nih.gov/pubmed/24040016
https://doi.org/10.1016/j.neuron.2016.10.064
https://www.ncbi.nlm.nih.gov/pubmed/27916455
https://doi.org/10.1016/j.neuroscience.2003.11.009
https://www.ncbi.nlm.nih.gov/pubmed/14751289
https://doi.org/10.1016/j.jns.2016.07.033
https://www.ncbi.nlm.nih.gov/pubmed/27538642
https://doi.org/10.1001/jamaneurol.2014.1954
https://doi.org/10.1016/j.nbd.2012.11.016


Cells 2024, 13, 1720 16 of 16

120. Harada, A.; Suzuki, K.; Kimura, H. TAK-063, a Novel Phosphodiesterase 10A Inhibitor, Protects from Striatal Neurodegeneration
and Ameliorates Behavioral Deficits in the R6/2 Mouse Model of Huntington’s Disease. J. Pharmacol. Exp. Ther. 2017, 360, 75–83.
[CrossRef]

121. Giralt, A.; Puigdellívol, M.; Carretón, O.; Paoletti, P.; Valero, J.; Parra-Damas, A.; Saura, C.A.; Alberch, J.; Ginés, S. Long-term
memory deficits in Huntington’s disease are associated with reduced CBP histone acetylase activity. Hum. Mol. Genet. 2012, 21,
1203–1216. [CrossRef]

122. Blum, D.; Galas, M.C.; Gall, D.; Cuvelier, L.; Schiffmann, S.N. Striatal and cortical neurochemical changes induced by chronic
metabolic compromise in the 3-nitropropionic model of Huntington’s disease. Neurobiol. Dis. 2002, 10, 410–426. [CrossRef]

123. Thakur, T.; Sharma, S.; Kumar, K.; Deshmukh, R.; Sharma, P.L. Neuroprotective role of PDE4 and PDE5 inhibitors in 3-
nitropropionic acid induced behavioral and biochemical toxicities in rats. Eur. J. Pharmacol. 2013, 714, 515–521. [CrossRef]

124. Puerta, E.; Hervias, I.; Barros-Miñones, L.; Jordan, J.; Ricobaraza, A.; Cuadrado-Tejedor, M.; García-Osta, A.; Aguirre, N. Sildenafil
protects against 3-nitropropionic acid neurotoxicity through the modulation of calpain, CREB, and BDNF. Neurobiol. Dis. 2010, 38,
237–245. [CrossRef]

125. VerPlank, J.J.S.; Tyrkalska, S.D.; Fleming, A.; Rubinsztein, D.C.; Goldberg, A.L. cGMP via PKG activates 26S proteasomes and
enhances degradation of proteins, including ones that cause neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 2020, 117,
14220–14230. [CrossRef] [PubMed]

126. Gilda, J.E.; Gomes, A.V. Proteasome dysfunction in cardiomyopathies. J. Physiol. 2017, 595, 4051–4071. [CrossRef] [PubMed]
127. Buglioni, A.; Burnett, J.C. New Pharmacological Strategies to Increase cGMP. Annu. Rev. Med. 2016, 67, 229–243. [CrossRef]
128. Pauls, M.M.; Moynihan, B.; Barrick, T.R.; Kruuse, C.; Madigan, J.B.; Hainsworth, A.H.; Isaacs, J.D. The effect of phosphodiesterase-

5 inhibitors on cerebral blood flow in humans: A systematic review. J. Cereb. Blood Flow Metab. 2018, 38, 189–203. [CrossRef]
[PubMed]

129. Giannattasio, S.; Corinaldesi, C.; Colletti, M.; Di Luigi, L.; Antinozzi, C.; Filardi, T.; Scolletta, S.; Basili, S.; Lenzi, A.; Morano, S.;
et al. The phosphodiesterase 5 inhibitor sildenafil decreases the proinflammatory chemokine IL-8 in diabetic cardiomyopathy:
In vivo and in vitro evidence. J. Endocrinol. Investig. 2019, 42, 715–725. [CrossRef]

130. Corinaldesi, C.; Ross, R.L.; Abignano, G.; Antinozzi, C.; Marampon, F.; di Luigi, L.; Buch, M.H.; Riccieri, V.; Lenzi, A.; Crescioli,
C.; et al. Muscle Damage in Systemic Sclerosis and CXCL10: The Potential Therapeutic Role of PDE5 Inhibition. Int. J. Mol. Sci.
2021, 22, 2894. [CrossRef] [PubMed]

131. Di Luigi, L.; Corinaldesi, C.; Colletti, M.; Scolletta, S.; Antinozzi, C.; Vannelli, G.B.; Giannetta, E.; Gianfrilli, D.; Isidori, A.M.;
Migliaccio, S.; et al. Phosphodiesterase Type 5 Inhibitor Sildenafil Decreases the Proinflammatory Chemokine CXCL10 in Human
Cardiomyocytes and in Subjects with Diabetic Cardiomyopathy. Inflammation 2016, 39, 1238–1252. [CrossRef]

132. ElHady, A.K.; El-Gamil, D.S.; Abdel-Halim, M.; Abadi, A.H. Advancements in Phosphodiesterase 5 Inhibitors: Unveiling Present
and Future Perspectives. Pharmaceuticals 2023, 16, 1266. [CrossRef]

133. Roy, S.; Kloner, R.A.; Salloum, F.N.; Jovin, I.S. Cardiac Effects of Phosphodiesterase-5 Inhibitors: Efficacy and Safety. Cardiovasc.
Drugs Ther. 2023, 37, 793–806. [CrossRef]
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