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Abstract: Skeletal muscle tissue can regenerate after damage through the action of satellite cells,
which proliferate as myoblasts when activated. Oxidative stress, marked by high rates of reactive
oxygen species (e.g., hydrogen peroxide, H2O2), impairs this process by increasing myoblast cell
death. Moringa oleifera leaf extract (MOLE), known for its antioxidant properties, was tested for
its protective effects on C2C12 myoblasts under oxidative stress. We assessed MOLE’s impact on
total antioxidant capacity (TAC), glutathione homeostasis (GSH/GSSG), cell viability, and wound
recovery. The metabolomic analysis of MOLE using an LC-MSMS ZenoTOF 7600 mass spectrometry
system identified key compounds, including peculiar glucosinolates (42.1%) and flavonoids (18.8%),
as well as phenolic acids (4.5%) and other significant metabolites (34.6%; among them, amino acids,
vitamins, and fatty acids). H2O2 disrupted myoblast redox balance and caused cell death, but MOLE
treatment restored the GSH/GSSG ratio, improved TAC, and increased cell viability. Additionally,
MOLE promoted faster wound closure in myoblasts exposed to H2O2. These findings suggest that
MOLE can protect C2C12 myoblasts by restoring redox balance and enhancing recovery under
oxidative stress.

Keywords: Moringa oleifera leaf extract (MOLE); C2C12 skeletal muscle cells; myoblast proliferation;
glutathione; redox homeostasis; oxidative stress; LC-MSMS ZenoTOF 7600 system metabolomics analysis

1. Introduction

Skeletal muscle constitutes up to 50% of total body mass and plays an important role
in maintaining optimal energy expenditure across the entire organism [1]. Rapid changes
in fuel selection are a hallmark of metabolically healthy muscle. Consequently, preserving
healthy skeletal muscle mass is essential throughout life in preventing or mitigating possible
metabolic diseases.

Skeletal muscle can regenerate through the activation of stem cells (satellite cells) by
environmental signals [2]. Once activated, satellite cells exit cell-cycle arrest, proliferate
as myoblasts, and form multinucleated cells with a complex process of cell alignment
and fusion that is able to repair damaged sections of the myofibers and maintain muscle
mass [3,4]. This is a complex process involving many cellular changes, and defects in the
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activation or proliferation of myoblasts can profoundly impair muscle regeneration [5–7].
In fact, a reduction in the regenerative potential of the fibers characterizes several physio-
pathological conditions. Muscle mass loss (atrophy) and ALS (amyotrophic lateral sclerosis)
are some examples of pathological conditions that involve the failure to activate myoblasts
and severely affect human ability and health [8–11].

Among the molecules that profoundly influence muscle regeneration, reactive oxygen
species (ROS), such hydrogen peroxide (H2O2), play a critical regulatory role [12–14]. Low-
to-moderate ROS levels are essential for muscle adaptation, cell signaling, the regulation of
gene expression, and muscle growth [13,15]. However, when ROS are produced at high
levels, they lead to the oxidation of macromolecules, which results in impaired myoblast
function, increased cell death, and hindered muscle repair. Elevated ROS levels occur
under physiological conditions such as aging, or are associated with metabolic diseases like
diabetes, as well as conditions of muscle mass loss, such as atrophy and sarcopenia [16].

The metabolic activity of muscles, which occurs in many types of physical exercise,
especially intense or unaccustomed, leads to an increase in reactive oxygen species, and
consequently, in oxidative stress, as indicated by elevated biomarkers of molecule oxidation
in both skeletal muscle and blood tissues [15,17,18]. Additionally, prolonged periods of
muscle disuse may induce processes that promote ROS production in skeletal muscle
fibers [19].

On the other hand, an increase in oxidative stress can compromise muscle functionality
and the ability to regenerate after damage, which can result in vigorous contraction. The
ability of satellite cells to repair muscle damage and facilitate recovery can be severely im-
paired by ROS-induced molecular and cellular damage [16,20,21]. While low-to-moderate
levels of ROS are essential for muscle adaptation, high levels of ROS significantly impair
muscle function [22].

In this context, there is an ever-increasing demand for strategies that enhance physical
performance by preventing muscle damage or aiding recovery after exertion. Among these,
nutritional strategies to mitigate or reduce the damage caused by elevated ROS levels to
macromolecules are the subject of current research [23,24].

In recent years, the natural products derived from Moringa oleifera Lam. (family
Moringaceae; order Brassicaceae) have been the subject of numerous studies comprising
different experimental models aiming to evaluate their antioxidant properties [25–29]. Dif-
ferent parts of the plant (i.e., leaves, seeds, roots) contain numerous bioactive molecules
with antioxidant, antimicrobial, and/or anti-carcinogenic properties [30,31]. Extracts
from Moringa oleifera demonstrate activity due to the presence of bioactive molecules
such as isothiocyanates, tannins, saponins, flavonoids, and terpenoids, especially in the
leaves [30–33]. Due to the remarkable efficacy of these bioactive molecules, and especially
some unique isothiocyanates, Moringa oleifera is gaining global interest for a wide range
of applications. Among the notable glucosinolates/isothiocyanate present, moringin, a
potent isothiocyanate produced by the hydrolysis of the glucosinolate glucomoringin by
the enzyme myrosinase, exhibits potent anti-inflammatory and indirect cytoprotective
antioxidant activity, supporting the therapeutic use of Moringa oleifera extracts for various
pathologies [33–35].

Moreover, flavonoids, other glycosides, and phenolic acids (e.g., chlorogenic acid,
ferulic acid) are present in moderate concentrations in Moringa oleifera leaf extracts. These
molecules have proven to be effective in counteracting the increase in reactive oxygen
species [36–39], acting as primary antioxidants by either inactivating lipid free radicals or
preventing the decomposition of hydroperoxides to produce free radicals [40–42].

Recently, our group demonstrated that Moringa oleifera leaf extract (MOLE) improved
the capacity of C2C12 myotubes to respond to oxidative stress via the activation of the SIRT1-
PPAR pathway [43]. Moreover, MOLE was able to induce the nuclear factor erythroid 2-
related factor (Nrf2) and its target gene heme oxygenase-1 (HO-1) pathway [29], resulting in
an increase in the antioxidant system of skeletal muscle cells. This restored the redox balance
(assessed by total free thiols, Trx, and GSH/GSSG ratio increase levels) and increased the
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antioxidant enzymatic system (catalase (CAT), superoxide dismutase (SOD), glutathione
proxidase (GPx), and glutathione S-transferase (GST)), significantly reducing markers of
cellular oxidative damage (thiobarbituric acid reactive substance (TBAR) and carbonylated
protein (PrCAR)) [44]. Based on these findings, we hypothesize that MOLE could efficiently
protect C2C12 myoblasts subjected to a pro-oxidant environment.

MOLE extract was analyzed for metabolic qualitative profiling by ultra-high-performance
liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS),
as previously described [45].

The aim of this research was to provide scientific evidence about the effect of Moringa
oleifera leaf extract on restoring redox balance in myoblasts subjected to an oxidative
insult mimicking (for example) the high stress condition that occurs during intense muscle
contractions. To this end, proliferative C2C12 myoblasts were treated with MOLE and/or
exposed to 0.3 mM H2O2 in single and combined treatments for 24 h and then analyzed for
(a) cell viability; (b) GSH homeostasis; (c) total antioxidant capacity (TAC); and (d) the ability
of myoblasts to replicate and migrate in the culture plate under different experimental
conditions through the “wound closure assay”.

2. Materials and Methods

The chemical reagents used in this research were purchased from Sigma-Aldrich
(St. Louis, MO, USA), unless otherwise specified.

2.1. MOLE: Ethanolic Extract of Moringa oleifera Leaves

The ethanolic extract of Moringa oleifera leaves was prepared as previously described [44].
Briefly, Moringa oleifera leaf powder (PureBodhi Nutraceuticals Ltd., London, UK)
(1 g powder/10 mL ethanol 100%) was gently sonicated (Vibra-Cell CV 18 SONICS VX 11,
Sonics & Materials, Newtown, CT, USA) twice for 10 min at +4 ◦C. After centrifugation
(2000× g for 10 min at +4 ◦C), the resulting supernatant was collected and stored at −20 ◦C
(stock solution equivalent to 15 mg/mL of dried leaves).

2.2. MOLE Qualitative Profiling

MOLE metabolomic qualitative profiling was carried out via ultra-high-performance
liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-
MS) on a SCIEX ZenoTOF 7600 mass spectrometer (AB SCIEX GmbH, Landwehrstraße 54,
Darmstadt, Germany), as previously described [43,45]. For deeper qualitative profiling, a
sample was acquired using the approaches of Data-Dependent Acquisition (zeno DDA)
and Data-Independent Acquisition (zenoSWATH). The obtained data were processed using
SciexOS Software 3.3 (AB SCIEX GmbH, Landwehrstraße 54, Darmstadt, Germany) and
the SCIEX Natural Products 2.1 Library (AB SCIEX GmbH, Landwehrstraße 54, Darmstadt,
Germany) and NIST 2017 Library in order to search for compound spectra databases.

The Formula Finder and Chemspider tools in SciexOS software (SciexOS software
version 3.3) were used for the analysis of molecules that had no correspondence with the
library but had accurate TOF MS and TOF MS/MS spectra. ZenoSWATH allowed for
more confident identification, particularly for cases of a very low abundance of secondary
metabolites. This method enhances the detection of these very-low-abundance metabolites
by searching for precursor ions and detecting their diagnostic fragment ions through
accurate mass measurements [43,45].

2.3. Cell Cultures

Mouse C2C12 myoblasts (ATCC, Manassas, VA, USA) were cultured in sterile con-
ditions at 37 ◦C with 5% CO2 in a humidified atmosphere at a density of 2 × 103/cm2

in Dulbecco’s modified Eagle’s medium (DMEM; HyClone, Oud-Beijerland, The Nether-
lands). The media were supplemented with Glutamax-I (4 mM l-alanyl-l-glutamine),
4.5 g/L glucose (Invitrogen, Carlsbad, CA, USA), and 10% heat-inactivated fetal bovine
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serum (Hy-Clone, Oud-Beijerland, The Netherlands). Cells were split 1:6 twice weekly and
fed 24 h before each experiment, as described previously [44,46].

2.4. Cell Viability

C2C12 viability was assessed by the Trypan blue exclusion assay, as previously de-
scribed [47]. Briefly, cells were seeded at low density (<15%) in 25 cm2 culture flasks. After
24 h (≈25% confluence), they were treated with different concentration of H2O2 (0.1–1 mM)
(H2O2 dose dependence), and various dilutions of the MOLE stock solution (1:50–1:1000
working solution) for 24 h (MOLE dose dependence). Additionally, different H2O2 expo-
sure times (6–48 h, time-dependent) were evaluated. Cells reached a maximum confluence
of 75%. Accordingly, for the combined treatments, concentrations of 0.3 mM H2O2 and a
1:100 dilution of MOLE were chosen to assess their effects on myoblast viability and oxida-
tive stress responses. Under these experimental conditions, the ethanol concentration in the
working solutions (0.1%, v/v) did not affect myoblast viability. After the treatments, cells
were trypsinized and collected by centrifugation (1200× g for 10 min at room temperature),
and then cell viability was assessed using the Trypan blue exclusion assay (cells/dye 0.05%
v/v solution in PBS mixed in a ratio of 1:1). With this method, it is possible to count the
live cells that have rejected the Trypan blue dye (alive) from the colored cells that have
incorporated it (dead cells) by analyzing the sample on a hemocytometer. Experiments
were performed in triplicate with different cell preparations and the results are expressed
as the number of cells counted.

2.5. Trolox® Equivalent Antioxidant Capacity

Cellular total antioxidant capacity was evaluated as previously described [29,48]. The
Trolox® equivalent antioxidant capacity (TAC) assay evaluates the ability of samples (cell
lysates) to prevent ABTS+ radical formation compared to Trolox® (vitamin E analogue)
standards in a pro-oxidative buffer. This assay allows the measurement of the lipo- and
hydro-philic antioxidants present in a sample. Briefly, 10 mL of cell lysate or standard
(0.125–2.0 mM) was incubated in ABTS-met-Myo-PBS buffer, and the absorbance at 734 nm
was monitored for 2 min. Then, the pro-oxidative insult was initiated by the addition of
H2O2 (0.45 mM) and the variation in absorbance was recorded in the following 10 min of
reaction. The variation in absorbance detected was compared to that obtained using the
different Trolox® standards (standard curve). Cell lysate TAC is expressed as micromoles
Trolox equivalent/mg protein tested.

2.6. Wound Closure Assay

The “wound closure assay” evaluates the ability of myoblasts to replicate and migrate
in a culture plate under different experimental conditions [49]. Briefly, C2C12 myoblasts
(2 × 103/cm2) were cultured in proliferative conditions in 6-well plates until approximately
50% confluence was reached. To create a discontinuity in the cell culture, a vertical wound
(1 mm) down through the cell monolayer was created by using a 1000 µL pipette tip in a
sterile environment, pressing firmly against the tissue culture plate and taking care not to
scratch the support. Afterward, culture media and cell debris were carefully removed, and
fresh media were added under sterile conditions. Then, an initial picture was taken (named
time = 0), and after a recovery period of two hours, cells were treated with MOLE (1:100),
H2O2 (0.3 mM) and the combined treatments for the subsequent 24 h. At the end of the
experimental time, the width of the wound was measured in triplicate and photographed.
The distance between the sides of the wound were measured (in triplicate) using ImageJ
software (version 1.51, Rasband, W.S., ImageJ, U.S. National Institutes of Health, Bethesda,
MD, USA) to evaluate wound closure after different treatments.

2.7. Glutathione Homeostasis

C2C12 glutathione homeostasis, including reduced (GSH) and oxidized (GSSG) glu-
tathione levels and the GSH/GSSG ratio, was quantified by a DTNB–glutathione reduc-
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tase recycling assay, as previously described [50]. Briefly, an adequate number of cells
(>107 cell collected) were suspended in (1:1) (v/v) mL 5% sulfosalicylic acid (SSA). The cells
were then lysed (by freezing and thawing the samples three times) and then immediately
centrifuged at 10,000× g for 5 min at +4 ◦C. The resulting deproteinized supernatant was
analyzed for total glutathione content (tGSH). Oxidized glutathione (GSSG) was selectively
measured in samples in which reduced glutathione (GSH) was masked by the pretreatment
with 2-vinylpyridine (2%) [43]. During the assay, 10 mL of the sample was mixed with the
reaction buffer, which consisted of 700 µL NADPH (0.3 mM), 100 µL DTNB (6 mM), and
190 µL H2O. The reaction was started by adding 2.66 U/mL glutathione reductase. The
variation in absorbance recorded at 412 nm by the TNB stoichiometric formation was noted
and compared to those obtained by using glutathione standards. The results were then
normalized to protein content.

2.8. Statistical Analysis

The Kolmogorov–Smirnov test was used to test the normal distribution of the data.
For all experiments, data are expressed as the means ± standard deviation (SD) of three
independent experiments, each performed in triplicate. To evaluate the statistically signifi-
cant differences of the data among the groups for each variable tested, one-way ANOVA
for repeated measures followed by Bonferroni post hoc analyses were performed. SPSS for
Windows (Version 17.0; SPSS Inc., Chicago, IL, USA) was used and statistical significance
was set at p < 0.05. The comparisons between the untreated controls and the control vehicles
showed no statistical differences for all variables tested [29,43].

3. Results
3.1. MOLE Metabolomic Fingerprint

Table 1 shows the relative percentages of metabolite groups identified in the MOLE
metabolomic fingerprint. Glucosinolates (GLs) made up the largest share at 42.1%, followed
by flavonoids (18.8%), as well as phenolic acids (4.5%) and other metabolites (34.6%; among
them, amino acids, vitamins, and fatty acids). The table shows the three most represented
bioactive molecules for each identified category.

Table 1. Relative amounts of constituents of MOLE 1.

Glucosinolates (relative %) 42.1 ± 0.3

4-O-acetyl-rhamnopyranosyloxybenzyl-GS 31.6 ± 0.4
Glucomoringin 10.3 ± 0.2

4-O-acetyl-glucopyranosyloxybenzyl-GS 0.2 ± 0.1

Flavonoids (relative %) 18.8 ± 0.2

Isoquercitrin 6.3 ± 0.3
Astragalin 4.5 ± 0.2

Rutin 2.4 ± 0.2

Phenolic acids (relative %) 4.5 ± 0.1

Cryptochlorogenic acid 2.2 ± 0.1
Chlorogenic acid 1.8 ± 0.2

Quinic acid 0.3 ± 0.1

Others (relative %) 34.6 ± 0.4

Alpha-linolenic acid 19.2 ± 0.4
Linoleic acid 9.2 ± 0.3

Pantothenic acid 1.6 ± 0.2
1 Metabolomic analysis was conducted on the MOLE working solution. The relative percentages of the most
abundant biomolecules in MOLE are categorized into different groups: glucosinolates, flavonoids, phenolic acids,
and others, with their respective percentages for each category. The table shows the three most represented
bioactive molecules for each identified category. The data presented are the mean ± SD of three different
extractions, each tested in triplicate.
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Notably, the most intense peaks corresponded to GLs. Due to the absence of ref-
erence standards for some GLs and their associated MS/MS spectral information, an
alternative identification approach was necessary. Glucosinolates are thioglucoside com-
pounds containing a sulfated aldoxime moiety and a variable side chain derived from
amino acids. This unique chemical structure produces diagnostic fragment ions in MS/MS
spectra. Specifically, a sulfated glucose moiety (fragment at 259.0122 m/z) and a sulfate
group (fragment at 96.9601 m/z) were readily identifiable in the spectra [33,51]. Using this
method, the following glucosinolates were identified from the ion chromatogram (XIC),
MS, and SWATH MS/MS spectra, with the following retention times (tR) and relative
percentages: glucosoonjnain (tR: 3.8), glucomoringin (tR: 4.2), sinalbin (tR: 4.3), 4-O-acetyl-
rhamnopyranosyloxybenzylGS (tR: 6.0, 6.4, 7.7), and 4-O-acetyl-glucopyranosyloxybenzylGS
(tR: 5.3, 7.0).

3.2. Effect of Hydrogen Peroxide Treatment on C2C12 Myoblast Viability and Total
Antioxidant Capacity

C2C12 myoblast viability was assessed using the Trypan blue exclusion assay, which
distinguishes dead from living cells through direct cell counting under an inverted mi-
croscope. For the dose-dependent experiments, cells were treated with a range of H2O2
concentrations (0.1–1 mM) for 24 h. We observed a dose-dependent effect of H2O2 treat-
ment, indicated by a decrease in the number of viable cells and a concomitant rise in
dead cells (Figure 1A). A concentration of 0.3 mM of H2O2 was then selected for all
subsequent experiments.
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Figure 1. C2C12 myoblast viability under oxidative insult. (A) C2C12 myoblasts were treated with
varying concentrations of H2O2 (0.1–1 mM) for 24 h to assess dose-dependent effects; (B) C2C12
myoblasts were treated with H2O2 0.3 mM for different durations (6–48 h) to evaluate time-dependent
effects. Cell viability was assessed using the Trypan blue exclusion assay. Results are expressed as the
number of cells (×1000) counted. Data presented are the mean ± SD of three different experiments,
each performed in triplicate. Statistical analyses were conducted using one-way ANOVA followed by
Bonferroni’s multiple comparisons test. ** p < 0.01; *** p < 0.001 vs. CTRL.

In the time-course (6–48 h) experiments, a statistically significant decrease in viable
cells, along with an increase in dead cells, was noted after 24 h of treatment (Figure 1B).

To evaluate whether the H2O2 treatment altered the antioxidant capacity in the my-
oblasts, we tested the time-dependent effects of 0.3 mM H2O2 administration on cellular
total antioxidant capacity (TAC) over a period of 6 to 48 h. We observed a statistically
significant decrease in TAC values over time (p < 0.05), with a reduction of up to 45% after
48 h of treatment (p < 0.01, Figure 2).
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0.3 mM for different durations (6–48 h). The total antioxidant capacity (TAC) of C2C12 myoblasts is
expressed as micromoles of Trolox equivalent/mg protein tested. Data presented are the mean ± SD
of three different experiments, each performed in triplicate. Statistical analysis was conducted using
one-way ANOVA followed by Bonferroni’s multiple comparisons test. *** p < 0.01 and ** p < 0.05
compared to control (CTRL).

3.3. Effect of MOLE Supplementation on C2C12 Myoblast Viability

To evaluate the effect of MOLE administration on C2C12 myoblasts, cells were treated
with a range of working solutions (1:50–1:1000 stock solution dilutions) for 24 h. No
statistically significant effect of MOLE administration was observed (Figure 3A).
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Figure 3. Effect of MOLE and H2O2 in single and combined treatments on C2C12 myoblast viability.
(A) C2C12 myoblasts were treated with different MOLE dilutions (1:50–1.1000 of stock solution) for
24 h; (B) C2C12 myoblasts were treated single and combined treatments of H2O2 0.3 mM and MOLE
(1:100 working solution) for 24 h. Cell viability was assessed using the Trypan blue exclusion assay.
Results are expressed as the number of cells (×1000) counted. Data presented are the mean ± SD
of three experiments, each performed in triplicate. One-way ANOVA was performed, followed by
Bonferroni’s multiple comparisons tests for panel (A) and (B), respectively. *** p < 0.001 vs. CTRL;
** p < 0.01 vs. H2O2.

For the subsequent experiments, we selected H2O2 at 0.3 mM and a MOLE dilution
of 1:100. Among the different working solutions of MOLE, we chose the 1:100 dilution
because it has been shown to have important biological effects in in vitro experiments on
muscle cells [29,43–45].
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We found that hydrogen peroxide exposure induced a decrease in the total number of
cells (24% reduction, p < 0.001) and a fourfold increase in the number of dead cells (p < 0.001)
compared to control cells (Figure 3B). Notably, MOLE administration significantly mitigated
the harmful effects induced by hydrogen peroxide (p < 0.01, Figure 3B).

3.4. Effect of MOLE on C2C12 Myoblast Migrative Ability

To investigate the effects of our treatments on the migratory ability of myoblasts,
C2C12 grown under proliferative conditions (<50% confluence) was subjected to a scratch
wound assay, and wound closure was measured after 24 h of recovery [49]. Briefly, in
the wound closure assay, a wound of 1 mm was created in the culture plate before each
treatment, and after 24 h, the width of the wound was measured in the control and treated
cell samples.

After 24 h, reductions in wound width of 48% and 44% were observed for the CTRL
and MOLE samples, respectively (Figure 4). After a single 24 h H2O2 treatment, a minor
reduction was observed compared to the control (20% reduction, p < 0.05).
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groove created before the treatments. Data and representative images presented are the mean ± SD
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Bonferroni’s multiple comparisons tests. * p < 0.05 vs. CTRL; § p < 0.05 vs. H2O2.

The combined MOLE + H2O2 treatment showed that the presence of MOLE enhanced
the cells’ ability to close the wound, resulting in a 36% reduction in wound width compared
to H2O2 alone (p < 0.05, Figure 4).

3.5. Effect of MOLE on C2C12 Myoblast Redox Status and Total Antioxidant Capacity

The hydrogen peroxide-induced perturbation of the redox state and the effect of MOLE
were evaluated by analyzing glutathione homeostasis. In particular, the GSH/GSSG ratio
is a well-known marker of redox status. We found statistically significant differences in
the GSH/GSSG ratio between the different treatments of the C2C12 myoblasts. The H2O2
treatment induced a decrease in total glutathione levels (tGSH, 13% p < 0.01), an increase in
GSSG levels (152% p < 0.05), and a decrease in the GSH/GSSG ratio (51% p < 0.05) compared
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to the control (Table 2). No statistically significant differences in glutathione homeostasis
were found after the MOLE treatments. Interestingly, the combination of MOLE with
H2O2 significantly prevented the H2O2-induced increase in oxidized glutathione (p < 0.01,
Table 2) and the decrease in the GSH/GSSG ratio (p < 0.01, Table 2).

Table 2. Glutathione homeostasis evaluation 1.

Total glutathione (tGSH)

CTRL 206.5 ± 7.5
MOLE 222.9 ± 7.8

H2O2 0.3 mM 181.6 ± 3.3 **
MOLE + H2O2 199.4 ± 13.5

Oxidized glutathione (GSSG)

CTRL 20.5 ± 4.3
MOLE 25.4 ± 0.8

H2O2 0.3 mM 31.2 ± 1.5 **
MOLE + H2O2 26.6 ± 0.4 §

Reduced to oxidized glutathione ratio (GSH/GSSG)

CTRL 9.5 ± 1.9
MOLE 7.8 ± 0.1

H2O2 0.3 mM 4.8 ± 0.4 *
MOLE + H2O2 6.5 ± 0.4 §

1 Total glutathione (tGSH) nanomol/mg protein, oxidized glutathione (GSSG, nanomol/mg protein), and the
reduced-to-oxidized glutathione ratio (GSH/GSSG) were evaluated in C2C12 myoblasts after 24 h in the presence
of MOLE (1:100 working solution), hydrogen peroxide (H2O2, 0.3 mM), and combined treatments. Data are
presented as the mean ± SD of three independent experiments, each performed in triplicate. Statistical analysis
was conducted using a two-way ANOVA followed by Bonferroni’s multiple comparisons test. * p < 0.05,
** p < 0.01 vs. CTRL; § p < 0.01 vs. H2O2.

The analysis of total antioxidant capacity revealed a statistically significant reduction
following 24 h of H2O2 treatment (p < 0.001, Figure 5). The combined treatment with MOLE
significantly reversed this decrease (p < 0.01, Figure 5).
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4. Discussion

Oxidative stress is a condition that can seriously compromise cellular functionality,
primarily through the disruption of cellular antioxidant homeostasis. One potential strategy
to counteract oxidative stress is the use of bioactive molecules with antioxidant properties.
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This approach is particularly important in areas that focus on muscle metabolism, muscle
function, and sports performance.

In this context, to meet the increasing demand for nutritional interventions targeting
oxidative stress, many studies have focused on strategies aimed at enhancing physical
performance, and especially reducing fatigue and increasing exercise endurance. These
conditions are closely linked to elevated oxidative stress levels [24,52–54].

Skeletal muscle tissue is particularly vulnerable to the harmful effects of oxidative
stress due to its high oxygen consumption. During physical exercise, especially in intense
or unaccustomed activities, muscle contractions are often accompanied by high ROS
production due to increased metabolic activity. This activity can lead to oxidative stress
and potential myofibrillar damage, which is evidenced by elevated biomarkers of oxidation
in both skeletal muscle and blood [55,56].

To preserve muscle function and protect cells from excessive ROS exposure, the use
of antioxidants has become a common strategy. Along these lines, appropriate antiox-
idant use has been shown to effectively balance the oxidant–antioxidant ratio in most
physiopathological conditions [52,57,58].

Among the natural extracts gaining recent popularity, Moringa oleifera extract has
shown promising results in muscle cell models as a supplement capable of counteracting
oxidative stress. We previously demonstrated that Moringa oleifera leaf extract (MOLE)
shows dose-dependent total antioxidant capacity in cell-free systems, and this indicates
that the efficacy of the leaf extract depends on the concentration of all the antioxidant
molecules present [43,44]. Moreover, MOLE has been shown to activate the antioxidative
metabolism through the SIRT1-PPAR and Nrf2 pathways (including its target gene, HO-1),
both of which are regulators of cellular resistance to oxidants in C2C12 myotubes.

MOLE also enhanced cellular antioxidant capacity by improving glutathione redox
homeostasis and increasing antioxidant enzyme activities in C2C12 myotubes [29,43]. These
effects were significant in protecting myotubes under oxidative insult conditions induced
by H2O2 treatment [44].

Muscle microtrauma commonly occurs after exercise and is normally associated with
elevated inflammatory processes and reactive oxygen species (ROS) production, which
may lead to the secondary damage of myofibers [59]. In response to such injury, satellite
cells are activated, exiting their quiescent state, entering the cell cycle, and proliferating.
These cells give rise to new cells that either return to quiescence (self-renewal) or proceed
to terminal differentiation. During this phase, the cells become myoblasts, which fuse
with damaged myofibers to form new muscle fibers or, alternatively, assist in growing old
uninjured fibers [2,60,61].

In this study, we focused on myoblasts under oxidative insult and supplementation
with a mix of molecules with antioxidant action (for example, polyphenols, phenolic acids,
etc.) because the efficiency of myoblasts is a key factor for optimal muscle regeneration.

Recently, studies utilizing antioxidant compounds to mitigate excess ROS production
in skeletal muscle during the repair process following myotrauma have provided evidence
of enhanced muscle recovery. This recovery is characterized by the upregulation of the
myogenic potential, viability, maintenance, and activity of satellite cells in both in vitro and
in vivo experimental models [62–64].

In this study, we employed C2C12 myoblasts, which are derived from satellite cells
and serve as a robust model for investigating muscle proliferation and differentiation
in vitro [65–67]. C2C12 cells are widely used to study muscle regeneration due to their ca-
pacity, under appropriate stimuli, to transition from a proliferative phase into differentiated
myofibers, resembling the behavior of satellite cells.

The present study demonstrated that mild, non-cytotoxic H2O2 treatment caused
growth inhibition, perturbation in redox status, and a decrease in total antioxidant capacity
in C2C12 myoblasts. These negative effects induced by oxidative insults can seriously
compromise the metabolism of satellite cells and, consequently, the regenerative capacity of
muscle fibers. Given that antioxidant supplementation is one strategy to counteract these
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effects, in this work we also evaluated the effect of Moringa oleifera leaf extract (MOLE)
on the vitality and proliferation, as well as the redox state, of myoblasts subjected to
oxidative insult.

Interestingly, we found that MOLE supplementation had a significant effect in coun-
teracting the harmful effects of hydrogen peroxide by restoring redox status and improving
the vitality and proliferation of C2C12 myoblasts.

Moringa oleifera Lam. is commonly referred to as the “miracle tree” due to its numerous
beneficial properties, which have significant implications for both therapeutic and nutri-
tional applications. In fact, different parts of the plant, such as the leaves, seeds, and roots,
are used by different populations in the world to treat various pathological conditions.
For example, Moringa oleifera preparations are used to support cardiovascular health and
regulate blood glucose levels, exhibiting antioxidant, anti-inflammatory, and potential
anti-cancer properties [68–76].

In particular, the leaves of Moringa oleifera are highly nutritious, making it easy to
incorporate them into one’s daily diet to benefit from their therapeutic and nutritional
properties. Leaves can be eaten fresh, such as in salads, or dried to produce moringa
powder and added to dishes. However, the powder should not be heated above about
40 ◦C so as not to denature the myrosinase. Many valuable bioactive molecules are present
in fresh leaves and many of these molecules are retained in significant quantities even after
preparation for food consumption [35,77].

First, we conducted a metabolomics analysis of the ethanolic extract of the leaves. The
highly sensitive high-resolution LC-MS/MS technique [78], specifically using a ZenoTOF
7600 mass spectrometer, significantly enhanced the detection and confident identification of
a higher number of bioactive molecules in the MOLE extracts by combining the Zeno-DDA
and Zeno-SWATH approaches [45]. This analysis identified the presence of many bioactive
molecules, including glucosinolates, flavonoids, phenolic acids, and other metabolites.
Among them were amino acids, vitamins, and fatty acids with important nutritional value.

Most of these molecules show antioxidant properties, which is further supported by
their effectiveness in mitigating the oxidative damage induced by H2O2 in the cell culture
model. The antioxidant capacity of the leaf extract is likely attributable to the collective
properties of the various bioactive molecules present in Brassicalean extracts, particularly
in Moringa oleifera, as previously documented [79–85]. Isothiocyanates, polyphenols,
flavonoids, and phenolic acids are known to exhibit antioxidant abilities, either preventing
hyperperoxide decomposition or inactivating lipid free radicals [86–88]. Glucosinolates
(GSLs) are typical of the order Brassicales (e.g., Brassicaceae, Capparaceae, Caricaceae, etc.),
and are known for their health-promoting and antioxidative properties, which are mediated
by the bioactive molecules present [89–93]. Glucosinolates are hydrolyzed by myrosinase
activity into isothiocyanates, such as benzyl isothiocyanate, phenyl isothiocyanate, and
sulforaphane [94]. These compounds are potent activators of the enzymatic antioxidant
system, primarily by upregulating Nrf2-mediated gene induction, which includes increases
in the mRNA levels of GCLC, NQO1, and HO-1, as well as elevated HO-1 protein levels.
Additionally, the p38 MAPK signaling pathway [95], known for its role in regulating Nrf2
phosphorylation and nuclear translocation, is also activated by isothiocyanates [96,97].

Isothiocyanates support mitochondrial function and help maintain protein integrity
under oxidative stress. It has been demonstrated that sulforaphane, one of the most studied
isothiocyanates, is able to reduce muscle damage and inflammation in individuals subjected
to oxidative stress induced by physical exercise [98]. Furthermore, it alleviates muscle
soreness by upregulating Nrf2-target NQO1 expression [99].

Isothiocyanates also exhibit Nrf2-independent effects, including the inhibition of
mitochondrial fission and the modulation of the mTOR pathway [100].

Moreover, glucosinolates, in addition to regulating oxidative stress levels, influence
inflammation, cell proliferation, cell-cycle arrest, apoptosis, angiogenesis, and invasion, as
well as modulating the activity of cancer cells [101–103].
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It should be noted that the metabolomic analysis detected only very small amounts
of isothiocyanates compared to glucosinolates in the MOLE sample, including 4-[(α-
Lrhamnosyloxy) benzyl]isothiocyanate, 4-[(2′-O-acetyl-alpha-L-rhamnosyloxy)-benzyl]-
isothiocyanate, 4-[(3′-O-acetyl-alpha-L-rhamnosyloxy)-benzyl]-isothiocyanate, and 4-[(4′-
O-acetyl-alpha-L-rhamnosyloxy)-benzyl]-isothiocyanate (derived from glucomoringin, 4-
O-acetylrhamnopyranosyloxybenzyl-GS 1, 4-O-acetylrhamnopyranosyloxybenzyl-GS 2,
and 4-O-acetylrhamnopyranosyloxybenzyl-GS 3, respectively). However, as a limitation,
we cannot exclude their production from glucosinolate metabolism in myoblasts.

Polyphenols, including subclasses such as flavonoids, flavanols, and phenolic
acids [104–106], are well known for their antioxidant properties, which involve scavenging
and neutralizing free radicals [107]. They mitigate oxidative stress and cellular damage
induced by reactive oxygen species (ROS) [108], modulate the activity of endogenous an-
tioxidant enzymes such as SOD, CAT, and GPx [107,109], and regenerate other antioxidants,
such as vitamins C and E [110]. Moreover, these molecules are able to activate specific
cellular defense mechanisms and to promote the repair of damaged molecules. This has a
significant consequence of enhancing cellular resilience against oxidative damage [111].

Flavonols, such as kaempferol and quercetin, are well-known potent antioxidants
capable of inhibiting lipid peroxidation and enhancing endogenous antioxidant defenses
through the activation of enzymes like superoxide dismutase (SOD) and catalase (CAT) [112].
Notably, quercetin protects myotubes against tumor necrosis factor (TNF)-induced muscle
atrophy under obese conditions by inducing Nrf2-mediated heme oxygenase-1 (HO-1)
expression while inhibiting NF-kB activation [113]. Furthermore, it has been demonstrated
that quercetin is able to promote mitochondrial biogenesis in skeletal muscles. This has an
important impact on improving cellular mitochondrial function, protein content, enzyme
activity, and respiratory function [23,114–117].

Additionally, catechin flavonoids present in Moringa oleifera, such as epicatechin and
epigallocatechin, are recognized for their antioxidant properties [118–122]. Polyphenols
also play a crucial role in maintaining cellular proliferative capacity under oxidative
stress [123–125]. Among these, phenolic acids, including hydroxybenzoic acids (e.g., gallic
acid) and hydroxycinnamic acids (e.g., caffeic acid), exhibit antioxidative properties that
contribute to cellular defense against oxidative stress. Specifically, gallic acid and caffeic
acid scavenge free radicals, inhibit lipid peroxidation, and preserve cellular health by
modulating antioxidant enzyme activity [126–128].

While Moringa oleifera leaves (MOLE) contain various bioactive molecules with antiox-
idant action, it is important to recognize that the biological effects of the extracts likely stem
from the synergistic effects of the entire mixture of bioactive compounds rather than a sin-
gle component [29,43,45]. Key molecules in MOLE include glucosinolates (glucomoringin
and 4-O-acetylrhamnopyranosyloxybenzyl-GS) and other important molecules, such as
flavonoids (e.g., isoquercitrin, astragalin, and rutin), phenolic acids (e.g., chlorogenic acid),
and lipids (e.g., omega-3 alpha-linolenic acid). These compounds contribute to the antiox-
idant protective action of MOLE either independently [129–131] or through synergistic
effects [29,43,45].

Interestingly, treatment with MOLE increased proliferation in H2O2-treated cells, as
evidenced by accelerated recovery in the wound scratch assays compared to the con-
trol cultures. This assay simulates a damaging situation, and myoblasts at the injury
site are evaluated for their migration and proliferation capacity [49]. It mimics the de-
generation/inflammation phase preceding muscle regeneration, during which satellite
cells/myoblasts migrate to the injury site, proliferate, and begin the differentiation process.

As discussed previously, the production of reactive oxygen or nitrogen species fol-
lowing increased metabolic rate/muscle activity and the increase in inflammatory events
following mechanical stress/fiber rupture and inflammatory reaction create oxidative
damage, as widely evidenced in the literature with the increase in markers such as malon-
dialdehyde (MDA), thiobarbituric acid reactive substances, and protein carbonyls, which
are detected in the blood or muscle cells [132,133].
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At the same time, no meaningful differences in antioxidant enzyme activity are re-
ported in the blood [132]. However, in whole muscle lysates, the GSH/GSSG ratio is
frequently decreased after the oxidative insult, whereas the levels of antioxidant enzyme
activity only slightly increase, most notably when compared with markers of oxidative
stress/damage [132,133].

The presence of MOLE in combination with H2O2 facilitated the restoration of wound
closure capability. This was attributed to the improvement of the redox state of myoblasts,
as demonstrated by the evaluation of the GSH/GSSG ratio and the analysis of total an-
tioxidant capacity, thereby partially restoring the resting condition negatively affected by
the oxidative insult from H2O2. Under our experimental conditions, the GSSG content
was higher than that found in vivo [134]. However, these are values that are always found
using the experimental model of C2C12 muscle cells.

The evaluation of the intracellular TAC showed that the treatment with MOLE, due to
the presence of bioactive molecules with antioxidant action, counteracted the decrease in
antioxidant capacity observed after the treatment with hydrogen peroxide.

However, in the analysis of the data, the experimental limitations that this method
entails must be taken into consideration [135]. Certainly, more in-depth studies on the
modulation of the level of molecules with intracellular antioxidant potential are warranted
in the future.

Overall, our results provide important insights into the regeneration process of skeletal
muscle, which is a complex event mediated by satellite cells. Maintaining the correct redox
balance is crucial for the proliferative and regenerative capacity of myoblasts. A detailed
understanding of these mechanisms is essential for comprehending pathological conditions
that lead to skeletal muscle degeneration and for identifying targeted therapeutic strategies.
In this context, Moringa oleifera leaf extract emerges as a protective supplement against
oxidative stress and could help muscle regeneration processes.

5. Conclusions

This study demonstrated that oxidative stress induced by H2O2 exposure disrupted the
redox balance and reduced cell proliferation in C2C12 myoblasts. The combined treatment
with MOLE exhibited antioxidant effects by significantly restoring total cellular antioxidant
capacity, improving the GSH/GSSG ratio, and enhancing cell viability, leading to the
restoration of the proliferative capacity of the cells. Thus, we conclude that MOLE serves
as a protective supplement against oxidative stress and can support muscle regeneration
processes, making it a significant aid in conditions related to reduced muscle regenerative
capacity. Further studies on the molecular mechanisms underlying the effects of MOLE,
particularly in degenerative conditions, are warranted.
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