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Abstract

Background and 
Aims

Pathogenic desmoplakin (DSP) gene variants are associated with the development of a distinct form of arrhythmogenic car-
diomyopathy known as DSP cardiomyopathy. Patients harbouring these variants are at high risk for sustained ventricular 
arrhythmia (VA), but existing tools for individualized arrhythmic risk assessment have proven unreliable in this population.

Methods Patients from the multi-national DSP-ERADOS (Desmoplakin SPecific Effort for a RAre Disease Outcome Study) Network 
patient registry who had pathogenic or likely pathogenic DSP variants and no sustained VA prior to enrolment were followed 
longitudinally for the development of first sustained VA event. Clinically guided, step-wise Cox regression analysis was used 
to develop a novel clinical tool predicting the development of incident VA. Model performance was assessed by c-statistic in 
both the model development cohort (n = 385) and in an external validation cohort (n = 86).

Results In total, 471 DSP patients [mean age 37.8 years, 65.6% women, 38.6% probands, 26% with left ventricular ejection fraction (LVEF)  
< 50%] were followed for a median of 4.0 (interquartile range: 1.6–7.3) years; 71 experienced first sustained VA events {2.6% [95% 
confidence interval (CI): 2.0, 3.5] events/year}. Within the development cohort, five readily available clinical parameters were iden-
tified as independent predictors of VA and included in a novel DSP risk score: female sex [hazard ratio (HR) 1.9 (95% CI: 1.1–3.4)], 
history of non-sustained ventricular tachycardia [HR 1.7 (95% CI: 1.1–2.8)], natural logarithm of 24-h premature ventricular con-
traction burden [HR 1.3 (95% CI: 1.1–1.4)], LVEF < 50% [HR 1.5 (95% CI: .95–2.5)], and presence of moderate to severe right 
ventricular systolic dysfunction [HR 6.0 (95% CI: 2.9–12.5)]. The model demonstrated good risk discrimination within both the de-
velopment [c-statistic .782 (95% CI: .77–.80)] and external validation [c-statistic .791 (95% CI: .75–.83)] cohorts. The negative pre-
dictive value for DSP patients in the external validation cohort deemed to be at low risk for VA (<5% at 5 years; n = 26) was 100%.

Conclusions The DSP risk score is a novel model that leverages readily available clinical parameters to provide individualized VA risk as-
sessment for DSP patients. This tool may help guide decision-making for primary prevention implantable cardioverter-de-
fibrillator placement in this high-risk population and supports a gene-first risk stratification approach.

Structured Graphical Abstract

Key Question
Patients harbouring pathogenic/likely pathogenic desmoplakin (DSP) variants are at high risk for sustained ventricular arrhythmia (VA), 
but existing tools for individualized arrhythmic risk assessment have proven unreliable. How should clinicians assess arrhythmic risk?   

Key Finding
Five readily available clinical parameters were included in a novel DSP risk score: female sex, history of non-sustained ventricular 
tachycardia, 24-h premature ventricular contraction burden, left ventricular ejection fraction <50%, and presence of right ventricular 
systolic dysfunction. The model displayed excellent risk discrimination in both derivation and validation cohorts.

Take Home Message
The DSP risk score is a novel model, which provides individualized VA risk assessment. This tool may help guide decision-making 
for primary prevention implantable cardioverter-defibrillator placement and supports a gene-first risk stratification approach.
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The desmoplakin risk score provides individualized predictions of 5-year ventricular arrhythmia risk in patients with pathogenic/likely pathogenic (P/ 
LP) desmoplakin variants based on five readily available clinical risk factors (www.dsp-risk.com). The desmoplakin risk score demonstrated strong 
discrimination of ventricular arrhythmia risk (c-statistic .79 during external validation) and accurately stratifies patients into low- (0%–5% risk at 5 
years), intermediate- (5%–20% risk at 5 years), and high-risk (>20% risk at 5 years) groups for the purposes of guiding primary prevention implan-
table cardiac defibrillator decision-making. DSP, desmoplakin; LVEF, left ventricular ejection fraction; NSVT, non-sustained ventricular tachycardia; 
PVC, premature ventricular contraction; RV, right ventricular; VA, ventricular arrhythmia.

Keywords DSP • VA • DSP cardiomyopathy • ICD • Sudden cardiac death • Risk prediction • ACM • ARVC

Introduction
Desmoplakin (DSP) is a cardiac desmosomal protein that plays a critical 
role in myocardial force transmission,1 and pathogenic variants in its en-
coding gene (DSP) are an important cause of arrhythmogenic cardiomy-
opathies.2,3 While traditionally associated with the development 
of arrhythmogenic right ventricular (RV) cardiomyopathy (ARVC), 
DSP-related disease is characterized by several unique features and 
has become increasingly recognized as a distinct clinical entity.4–6

Desmoplakin variant carriers demonstrate high rates of left ventricular 
(LV) pathology including both LV systolic dysfunction and LV myocardial 
fibrosis, suffer from episodes of inflammatory myocardial injury, and are 
at particularly increased risk for life-threatening ventricular arrhythmias 
(VA).4–7 Implantable cardioverter-defibrillators (ICDs) are thus an es-
sential tool for preventing DSP-related sudden cardiac death (SCD).8

However, while current guidelines agree upon the benefits of offering 
an ICD for secondary prevention of sustained VA,8–10 the indications 
for prophylactic ICD use in patients with P/LP DSP variants are less clear.

The 2019 ARVC risk calculator is a validated, patient-specific risk 
prediction tool designed to assist clinicians in decision-making regarding 
the use of primary prevention ICDs in ARVC.11 However, while this 
tool reliably predicts sustained VA events in patients with classical 
ARVC,12–14 it has demonstrated poor performance in both patients 
with left-sided disease15,16 and those with P/LP DSP variants.17,18 The 
inability to provide dependable risk assessment therefore represents 
a major deficiency in the clinical care of these patients. While genotype- 
tailored strategies have demonstrated benefit in other forms of ar-
rhythmic cardiomyopathy,19–21 the rarity of patients with DSP variants 
described in the current literature has thus far limited the development 
of DSP-specific risk models.

With this goal in mind, we identified DSP patients without sustained 
VA prior to enrolment from within the DSP-ERADOS (Desmoplakin 
SPecific Effort for a RAre Disease Outcome Study) cohort of patients 
with P/LP DSP variants. Using readily available clinical variables, we de-
veloped and validated the DSP risk score, a clinical tool providing per-
sonalized VA risk assessment for DSP patients being considered for 
primary prevention ICD implantation.

Methods
This study conformed to the Declaration of Helsinki and was approved by local 
ethics and/or institutional review boards. To maintain patient confidentiality, 
data and study materials have not been made publicly available, but a limited 
data set may be made available upon reasonable request.

Study population
This was a retrospective analysis of patients from the DSP registry maintained 
by the DSP-ERADOS Network group.5 This international collaboration 

includes 26 academic institutions across nine countries, with each institution 
functioning as an independent, prospective, observational patient registry. 
Individuals seen at one of these institutions before 1 March 2023 were en-
tered in the registry if they harboured a P/LP variant in the DSP gene in ac-
cordance with the American College of Medical Genetics and Genomics 
(ACMGG) criteria.22 The study population thus includes both proband pa-
tients (defined as the first affected individual in a family seeking medical atten-
tion) and relatives in whom the P/LP DSP variant was identified for diagnostic 
purposes or cascade screening. Registry patients were included in the cur-
rent study if they (i) underwent ambulatory cardiac monitoring at the time 
of their initial evaluation, (ii) underwent either echocardiographic or cardiac 
magnetic resonance (CMR) imaging at the time of their initial evaluation, and 
(iii) had clinical follow-up available for longitudinal outcome ascertainment. 
Patients were excluded from this study if they had a history of sustained 
VA prior to enrolment or if sustained VA was their presenting symptom. 
Given the gene-first nature of this cohort, we refer to participants of this 
study as DSP patients throughout the manuscript.

The overall cohort was divided into two groups along institutional lines 
for model development and external model validation. Briefly, contributing 
centres were selected as part of the external model validation cohort 
such that this cohort (i) comprised ∼20% of the overall patient cohort 
and (ii) reflected the diverse geographic locations of the DSP-ERADOS 
Network. Specific institutions comprising each of the two cohorts are 
shown in Figure 1.

Data collection
Data were collected independently at each institution according to a set 
of standardized definitions (see Supplementary data online, Table S1). 
Enrolment (time = 0) of DSP patients was defined as the first clinical evalu-
ation of the patient at which initial work-up including echocardiography or 
CMR imaging and ambulatory cardiac monitor was either available or ob-
tained within the next 90 days. Available demographics, patient medical his-
tory, genetic test results, and baseline cardiac instrumental exams, including 
12-lead electrocardiogram (ECG), echocardiography, CMR, and ambula-
tory cardiac monitor, were retrieved for each patient, if available. All DSP 
genetic variants initially considered P/LP underwent centralized expert re-
view by specialists in cardiac genetics (B.M. and C.A.J.), in accordance 
with the ACMGG guidelines and a previously published arrhythmogenic 
cardiomyopathy variant protocol.22,23 Moderate to severe RV systolic dys-
function was defined as the presence of RV ejection fraction (RVEF) < 40% 
on CMR or RV fractional area change < 33% on echocardiography (if CMR 
was not available); further RV functional categorizations are presented in 
Supplementary data online, Methods S1. While protocolized quantitation 
of late gadolinium enhancement (LGE) burden on CMR was not available 
in this multinational cohort, high-risk LGE pattern was defined as previously 
published24 according to the distribution of LGE involvement: (i) sub- 
epicardial, (ii) transmural, or (iii) involving both interventricular septum 
and LV free wall.

Outcomes
The primary outcome of this study was the development of a first sustained 
VA event, defined as a composite of sustained ventricular tachycardia (VT) 
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(lasting ≥30 s at ≥100 b.p.m. or with haemodynamic compromise requiring 
cardioversion), ventricular fibrillation/flutter, sudden cardiac arrest (SCD), or 
appropriate ICD interventions including both ICD shock or anti-tachycardia 
pacing for sustained VA. We additionally defined life-threatening VA (LTVA) 
events as a composite of SCD, aborted SCD, ventricular fibrillation, or fast 
sustained VT (≥250 b.p.m.). Secondary outcomes used for competing risk 
analysis included heart transplantation and overall mortality. Outcomes 
were adjudicated locally at each centre via review of ECG, ICD interrogations, 
and patient medical records.

Statistics
Analyses were performed in Python version 3.9.13 using the open-source 
Pandas and Lifelines statistical code libraries. Baseline characteristics were 
presented as mean ± standard deviation for continuous variables and as 
proportions for categorical variables; continuous variables that did not fol-
low normal distributions were presented as median with interquartile range 
(IQR). Unpaired Student’s t-test, proportional Z-test, and Mann–Whitney 
U test were used to test differences between patients who did and did 
not develop sustained VA for normally distributed continuous, categorical, 
and non-normally distributed continuous variables, respectively.

Missing data were considered to be missing at random and imputed using 
multiple imputation with chained equations; a more detailed description of 
imputation and missingness is presented in Supplementary data online, 
Methods - Data Inputation .

Model development
The DSP risk score was developed in accordance with the Transparent 
Reporting of a multivariable Prediction model for individual prognosis or 
Diagnosis (TRIPOD) statement.25 The association between potential ar-
rhythmic risk factors in patients with DSP variants and the primary outcome 
of first sustained VA was assessed using Cox regression, and both univari-
able and multivariable hazard ratios (HRs) are reported. Proportional haz-
ard assumptions were verified using scaled Schoenfeld residual testing. 
Conversion of variables from continuous to dichotomous values was 
decided based upon graphical assessment of the hazard for sustained VA 
over different clinically relevant ranges of those variables. Candidate vari-
ables known to have strong associations with VA based on previously 
published work4,5,7,8,11,12 were considered iteratively for addition to the 
prediction model (a complete list is included in Supplementary data 
online, Methods S2). The continued predictive benefit of each added variable 
was assessed using log-likelihood ratio testing, and model development was 
finalized once the test P-value exceeded .1 or the addition of five predictive 
variables (allowing for ∼10 sustained VA events per variable), whichever 
came first. Given the high missingness in CMR-derived data, non-CMR vari-
ables were preferentially selected for inclusion. While this study was not ad-
equately powered to develop and externally validate an independent model 
for the prediction of LTVA events, we assessed the proportion of predicted 
arrhythmic risk that was comprised of LTVA events using Cox regression 
over the combined DSP cohort with the previously developed DSP risk 
score prognostic index as the sole predictor of LTVA.

Model performance was assessed using concordance-based c-statistics 
in both the development and external validation cohorts. Here, 95% 
confidence intervals (CIs) were assessed using five-fold cross-validation. 
Optimism correction was not used. Model calibration was assessed graphic-
ally as a comparison between predicted and observed rates of sustained VA 
within the overall cohort. We also assessed the clinical utility of the model for 
prospective risk stratification and ICD decision-making by dividing patients 
into the following risk groups: (i) low-risk, defined as predicted 5-year VA 
risk < 5%, (ii) intermediate-risk, defined as predicted 5-year VA risk between 
5% and 20%, and (iii) high-risk, defined as predicted 5-year VA risk > 20%. 
The cumulative survival free from sustained VA was estimated using the 
Kaplan–Meier method. Event rates are reported as averages over the 
5-year period following the initial patient evaluation. Follow-up duration 
was calculated from the date of initial evaluation to the date of the study 

outcome or censoring, which was defined as death from any other cause, 
heart transplantation, or the most recent follow-up visit at which the out-
comes could be ascertained. Log-rank testing was used to assess differences 
in survival curves between subgroups. Competing risk analysis was also per-
formed using an Aalen–Johansen risk estimator and incident VA, heart trans-
plantation, and mortality as competing risks. We calculated sensitivity, 
specificity, positive (PPV), and negative (NPV) predictive values for sustained 
VA events at 5 years at these clinically relevant risk-group cut-offs based on 
previously published methods for estimating these metrics in survival data.26

Results
Patient characteristics and outcomes
The overall cohort comprised 471 DSP patients followed for a median of 
4.0 (IQR: 1.6–7.3) years. The average age of these patients was 37.8 ±  
17.2 years, 309 (65.6%) were women, and 182 (38.6%) were probands. 
There were 211 different P/LP DSP variants (see Supplementary data 
online, Table S2); variants were truncating in 408 patients (86.6%) and 
missense in 58 patients (12.3%). Echocardiography was available for 
424 (90.0%) patients, and CMR evaluation was performed in 387 
(82.2%) patients. Baseline patient characteristics stratified by the pres-
ence or absence of VA outcome are presented in Table 1. Baseline char-
acteristics for patients included in the model development vs. external 
model validation cohorts, and by contributing centres of the DSP- 
ERADOS Network, are presented in Supplementary data online, 
Tables S3 and Table S4, respectively.

Sustained VA was experienced by 71 (15.1%) patients at a median of 
3.9 (IQR: 1.6–6.7) years following enrolment. Initial sustained VA events 
included 10 aborted SCD events (14.1%), 13 ICD interventions for fast 
VA (VF or VT ≥ 250 b.p.m.) (18.3%), 28 ICD interventions for slower 
VT (<250 b.p.m.) (39.4%), and 20 spontaneous sustained VT events 
(<250 b.p.m. or self-terminating after 30 s) (28.2%). Life-threatening 
VA occurred in 26 DSP patients, including three patients in which 
a slower sustained VA event occurred prior to the LTVA (see 
Supplementary data online, Figure S1). Five (1.1%) patients died during 
follow-up. Fourteen (3%) patients underwent cardiac transplantation. 
Within the development and external model validation cohorts, 53 
(13.8%) and 18 (20.9%) patients experienced sustained VA, respective-
ly. Overall, 2.6% (95% CI: 2.0–3.5) of patients experienced a sustained 
VA event per year (Figure 2). Compared with patients who did not ex-
perience sustained VA events during follow-up, patients who did were 
more likely to be female (77.5% vs. 63.5%, P = .02), were more likely to 
be probands (59.2% vs. 38.6%, P = .0001), had greater numbers of 
T-wave inversions (TWIs) in inferior and anterior ECG leads (3 (IQR: 
0–4) vs. 1 (IQR: 0–2), P < .0001], had greater burdens of both non- 
sustained ventricular tachycardia (NSVT) (13.2% vs. 39.4%, P < .0001) 
and premature ventricular contractions (PVCs) [2000 (IQR: 800– 
4500) vs. 300 (IQR: 5–1700), P < .0001], and had both lower LV 
ejection fraction (LVEF) (47 ± 14% vs. 55 ± 11%, P < .0001) and higher 
rates of moderate to severe RV dysfunction (12.7% vs. .8%, P < .0001). 
At the end of follow-up, ICDs were implanted in 184 (39.1%) patients, 
including 57 (80.3%) patients who did and 127 (31.8%) patients who did 
not experience a first sustained VA event.

To inform model development and confirm the relevance of the 
most important risk factors, relationships between clinically relevant 
cut-offs of continuous variables and HRs for sustained VA events 
were assessed graphically (Figure 3). Hazard for sustained VA events in-
creased linearly with both the logarithm of 24-h PVC count and the 
number of inferior and anterior ECG leads with TWI. Hazard for sus-
tained VA events increased sharply below an LVEF of 50% but remained 
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relatively constant even for more severely reduced LVEF. Both moder-
ate and severe RV dysfunction demonstrated increased hazards for sus-
tained VA. Based on these results, we performed univariable and 
multivariable Cox regression between potential arrhythmic risk factors 
and incident VA (Table 2). Here, female sex, history of NSVT, presence 
of moderate or severe RV dysfunction, and the log of the burden of 
PVCs were strongly associated with incident VA on both univariable 
and multivariable Cox regression. Both LVEF < 50% and the number 
of inferior and anterior ECG leads with TWI were significantly asso-
ciated with incident VA on univariable analysis. However, while there 
was a trend towards an association between LVEF < 50% and incident 
VA on multivariable analysis (P = .07), there was no association be-
tween number of inferior and anterior ECG leads with TWI and inci-
dent VA after adjustment for other risk factors. A competing risk 
assessment was performed as a sensitivity analysis using heart trans-
plant and mortality as competing risks but did not impact results.

The desmoplakin risk score
Based upon a step-wise addition of variables to the model, the finalized 
DSP risk score (available at www.DSP-risk.com) included five clinical and 
imaging-based risk factors: female sex, history of NSVT, LVEF < 50%, mod-
erate or severe RV dysfunction (RVEF < 40% on CMR or RV fractional 
area change < 33% on echocardiography), and the natural logarithm of 
the total 24-h PVC count. Analysis of other potential arrhythmic risk pre-
dictors is presented in Supplementary data online, Methods S2 and for 
LVEF as a continuous risk predictor in Supplementary data online, 
Methods S3. Here, the risk of sustained VA events at 5 years from the 
time of initial evaluation is calculated according to Equation (1).

5 year risk for sustained VA = 1 − (0.929)exp(PI). (1) 

Here, PI represents the prognostic index, which is calculated according to 
Equation (2). Here, dichotomous predictors are defined numerically as 1 
(if the predictor is present) or 0 (if the predictor is absent).

PI = 0.735 ∗ (female sex) + 0.592 ∗ (NSVT)

+ 0.581 ∗ (LVEF < 50%) + 1.71 ∗ (Mod/Sev RV dysfunction)

+ 0.199 ∗ ln (24 h PVC count) − 1.787. (2) 

Other risk factors considered for model addition included the number of 
TWI on inferior and anterior ECG leads, patient age, and the presence of 
high-risk LGE pattern on CMR, but these did not meet our pre-specified 
statistical criteria (P < .1 during log-likelihood ratio testing and >10 events 
per predictive variable).

Sub-analysis of the DSP risk score examining the proportion of ar-
rhythmic risk comprised of LTVA yielded Equation (3).

5 year risk for LTVA = 1 − (0.975)exp(PI). (3) 

The DSP risk score demonstrated good discrimination, with c-statistics of 
.782 (95% CI: .765–.799) during model development and .791 (95% CI: 
.751–.830) during external validation. Prediction of LTVA over the com-
bined DSP cohort using the DSP risk score prognostic index also had 
strong discrimination, with c-statistic of .752 (95% CI: .735–.768). 
Desmoplakin risk score calibration in the development and external 
validation cohorts (see Supplementary data online, Figure S2) and after 
stratification of proband/family member status (see Supplementary data 
online, Figure S3) was good. Model performance was good for both 
male [n = 162; c-statistic .780 (95% CI: .753–.807)] and female patients 
[n = 309; c-statistic .765 (95% CI: .760–.770)]; differences in patient char-
acteristics by sex are presented in Supplementary data online, Table S5.

Figure 1 Flowchart showing patient selection for the model development and external model validation cohorts. VA, ventricular arrhythmia
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The DSP risk score was able to effectively stratify patient risk 
(Structured Graphical Abstract). Observed rates of sustained VA events 
were .4%/year (95% CI: .1–1.6) in those predicted to be at low-risk 
(n = 186, 39.5%), 2.8%/year (95% CI: 1.9–4.1) among those predicted 
to be intermediate-risk (n = 217, 46.1%), and 6.6%/year (95% CI: 
4.5–9.4) among those predicted to be at high risk (n = 68, 14.4%). 
Log-rank testing showed significant differences between all predicted 
risk groups (P < .0001). Within the external testing cohort (n = 87), 
we assessed the clinical utility of using these risk groups to determine a 
patient’s hypothetical appropriateness for ICD implantation (Table 3). 
No DSP patients prospectively determined to be low risk (n = 26, 
30.2%) had sustained VA events at 5 years, resulting in an NPV of 
100%. Specific characteristics of patients in each of the three risk groups 
are presented in Supplementary data online, Table S6.

We performed a sub-analysis examining the role of high-risk LGE 
pattern for the prediction of sustained VA events in the subset of pa-
tients with available CMR data (n = 387). High-risk LGE pattern was 

correlated with other risk predictors included in the DSP risk score 
(see Supplementary data online, Figure S4). While high-risk LGE pattern 
was strongly associated with sustained VA events on univariable Cox 
regression [HR 2.9 (95% CI: 1.6–5.5), P = .0009) within the develop-
ment cohort (n = 321), this association was no longer significant after 
controlling for other risk factors [HR 1.54 (95% CI: .82–2.92), 
P = .18]; addition of high-risk LGE to the model could not be justified 
based on log-likelihood ratio testing (P = .86). In the low-risk group 
(5-year risk for VA < 5%; n = 149), only 1 of 51 patients (2%) with high- 
risk LGE pattern experienced a sustained VA event. This patient also 
had PVC/24 h > 1000 and their VA event occurred 6.1 years following 
their initial evaluation. Given the signal for additive prognostic informa-
tion, we performed an additional Bayesian analysis of high-risk LGE pat-
tern in the low- and intermediate-risk groups (5-year VA risk < 20%; 
n = 335) (see Supplementary data online, Methods S4 and Table S7); 
positive and negative likelihood ratios were 1.7 and .5, respectively, 
for patients with or without high-risk LGE.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline characteristics of patients included in the overall cohort, stratified according to their subsequent 
development or survival free from sustained ventricular arrhythmia

Variable All patients 
(N = 471)

VA free survival 
(n = 400)

Incident VA 
(n = 71)

P-value

Age (years) 37.8 (±17.2) 37.9 (±17.4) 37.3 (±15.8) .78

Female Sex 309 (65.6%) 254 (63.5%) 55 (77.5%) .02

Non-White ethnicity 31 (6.6%) 25 (6.2%) 6 (8.5%) .49

History of cardiac syncope 46 (9.8%) 36 (9.0%) 10 (14.1%) .18

Symptomatic dyspnoea 98 (20.8%) 78 (19.5%) 20 (28.2%) .10

Proband status 182 (38.6%) 140 (35.0%) 42 (59.2%) .0001

Missense variant 58 (12.3%) 49 (12.2%) 9 (12.7%) .92

Truncating variant 408 (86.6%) 346 (86.5%) 62 (87.3%) .85

Non-sense 194 (41.2%) 162 (40.5%) 32 (45.1%) .47

Frameshift 183 (38.9%) 158 (39.5%) 25 (35.2%) .49

Splice 31 (6.6%) 26 (6.5%) 5 (7.0%) .87

Deletion/duplication 5 (1.1%) 5 (1.2%) 0 (.0%) .34

Number of ECG leads with T-wave inversion 1 [0–3] 1 [0–2] 3 [0–4] <.0001

NSVT on ambulatory monitor 81 (17.2%) 53 (13.2%) 28 (39.4%) <.0001

24-h PVC count 500 [12–2346] 300 [5–1699] 2000 [798–4519] <.0001

PVC count/24 h > 500 235 (49.9%) 174 (43.5%) 61 (85.9%) <.0001

LVEF 53.8 (±11.9) 55.0 (±11.1) 47.2 (±13.7) <.0001

LVEF < 50% 121 (25.9%) 83 (21.0%) 38 (53.5%) <.0001

Moderate to severe RV dysfunction 12 (2.6%) 3 (.8%) 9 (12.7%) <.0001

CMR evaluation 387 (82.2%) 331 (82.8%) 56 (78.9%) .43

Any LGE 245 (63.3%) 200 (60.4%) 45 (80.4%) .038

High-risk LGE pattern 185 (47.8%) 145 (43.8%) 40 (71.4%) .001

Right ventricular LGE 32 (8.3%) 23 (6.9%) 9 (16.1%) .03

Variables are expressed as frequency (%), mean ± standard deviation, or median [IQR], as appropriate. 
CMR, cardiac magnetic resonance; ECG, electrocardiogram; LGE, late gadolinium enhancement; LVEF, left ventricular ejection fraction; NSVT, non-sustained ventricular tachycardia; PVC, 
premature ventricular contraction.
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Discussion
In this study, we present the first clinical tool for assessing individualized 
sustained VA risk in DSP patients without prior VA events and validate 
its performance in a distinct external cohort. This tool, which we term 
the DSP risk score, was able to reliably distinguish between those pa-
tients with incident-sustained VA during 5-year follow-up and those 
who survived free of sustained VA based upon five readily available clin-
ical parameters: female sex, history of NSVT, LVEF < 50%, moderate or 
severe RV dysfunction, and the natural logarithm of the total 24-h PVC 
count. For those DSP patients deemed to have low baseline risk (<5% 
risk for sustained VA at 5 years), the DSP risk score demonstrated ex-
cellent NPV.

Compared with existing risk assessment tools, the DSP risk score de-
monstrated marked improvement in risk stratification for DSP pa-
tients.5,17 We believe that this model has the potential to be used as 
part of everyday shared decision-making discussions of the use of pri-
mary prevention ICDs in this important, clinically distinct form of ar-
rhythmogenic cardiomyopathy. To facilitate its use, we have made 
our model available online at www.DSP-risk.com. The DSP risk score 
represents an important step forward in arrhythmic risk assessment 
that is tailored not just to a patient’s clinical phenotype but also to 
his or her underlying genetic substrate.

Desmoplakin-specific risk factors for 
sustained ventricular arrhythmia
Our findings reinforce the unique nature of DSP-specific VA risk that 
has been observed by other groups. As in other arrhythmogenic cardio-
myopathies, electrophysiologic derangement, including both increased 
PVC burden and the presence of NSVT on ambulatory monitoring, ap-
pears to be important predictors of subsequent VA events. The magni-
tude of increased VA risk conferred by these findings appears to be very 

similar across DSP-related disease, ARVC,11 and phospholamban 
(PLN)-related disease.21 While RV dysfunction is another known risk 
factor for sustained VA events in ARVC, the magnitude of risk con-
ferred by its presence was even more pronounced in DSP (HR DSP: 
6.0; HR ARVC: 1.8).27 Importantly, this risk factor was much less com-
mon in DSP patients (moderate to severe RV dysfunction present in 
2.6% of patients). Moderate to severe RV dysfunction is thus an infre-
quent manifestation of DSP,5 and, when paired with the fact that it was 
identified only in the presence of multiple other VA risk factors, this 
finding suggests that RV dysfunction may be a marker of more advanced 
disease [analogous to LV involvement in plakophilin (PKP2)-mediated 
ARVC]. Unlike for patients with other cardiomyopathies in whom 
LVEF < 30%–35% usually implies increased VA risk (and, as a result, is 
often used as a cut-off for ICD implantation decisions), we found 
that DSP patients had elevated VA risk at even low levels of LV systolic 
dysfunction. Here, VA risk increased below an LVEF threshold of 50% 
and remained stably elevated even for more severely reduced LVEFs. As 
suggested by prior studies demonstrating the predilection of DSP var-
iants to cause LV fibrosis and subsequent systolic dysfunction,4–7 the 
importance of LV morphologic and functional evaluation is another dis-
tinguishing feature of VA risk assessment in these patients. The ARVC 
risk calculator, which was derived in a predominantly PKP2 variant or 
gene-elusive patient cohort, does not incorporate any direct assess-
ments of LV involvement (either the presence of LGE or LVEF). This 
has proven to be a limitation for risk stratification of patients with 
less common ARVC genotypes in which LV involvement is frequent 
(e.g. DSP), and multiple external validation studies have demonstrated 
unreliable performance of the ARVC risk calculator for patients with 
LV involvement.15,18 Finally, in stark contrast to other cardiomyop-
athies,28,29 we identified female sex, rather than male sex, as a strong 
independent risk factor for VA. The underlying mechanism of this asso-
ciation is yet to be fully decoded, but differences in sex hormone levels 
and history of pregnancy are suspected to play roles.30

Of note, while DSP patients experiencing incident-sustained VA 
events were more likely to be probands than those who did not, defin-
ing proband status for an individual patient can be difficult from a prac-
tical standpoint. Family history may be unknown or ambiguous, 
particularly given the possibility of SCD as the first manifestation of 
DSP-related disease. In the era of increasingly widespread, community- 
based genetic testing,31 there is also likely to be a shift towards initial 
identification of phenotype-negative patients or patients with mild 
phenotype within carrier families. Proband status was thus purposefully 
excluded as a predictor during the development of the DSP RISK 
SCORE. Importantly, the DSP risk score demonstrated well-calibrated 
risk prediction in both proband and family member subgroups (see 
Supplementary data online, Figure S3), suggesting that much of the pre-
dictive value of proband status is accounted for by the other included 
risk predictors. Likewise, we did not include LGE as a quantitative pre-
dictor due to the practical difficulties in achieving robust adjudication of 
this variable across sites. Since focal sub-epicardial LGE occurs early in 
the disease process with subsequent progression to circumferential 
LGE,4 prioritization of LGE as a continuous variable in future studies 
may help to further refine risk assessment in these patients.

Value of genotype-tailored arrhythmic 
risk assessment
While patients with P/LP DSP variants often fulfil the criteria for the 
diagnosis of ARVC (due to the presence of a P/LP DSP variant fulfilling 
a major criterion), the poor performance of the ARVC risk calculator 

Figure 2 Kaplan–Meier curve showing survival free from sustained 
ventricular arrhythmia events in the overall cohort. Lighter shading re-
presents 95% confidence intervals
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within this population highlights the need for genotype-tailored strat-
egies for risk assessment.17,18 These strategies have demonstrated im-
proved risk prediction in other genetic cardiomyopathies,32 including 
those related to filamin C (FLNC),19 lamin A (LMNA),20 and PLN.21

Development of the DSP risk score is thus part of a larger cultural shift 
away from basing arrhythmic risk stratification on groups of patients 
with loosely similar clinical phenotype and towards a ‘gene-first’ ap-
proach.33 However, the way in which this new paradigm impacts the 
use of ICDs in patients with arrhythmogenic cardiomyopathies remains 
to be seen. Unlike in hypertrophic cardiomyopathy where specific risk 
cut-offs derived from analogous risk models have been recommended 
for deciding ICD eligibility,10,34 ICD management in ARVC has historic-
ally leveraged risk scores as a tool for guiding shared decision-making 
conversations,11,12 but regional differences exist.35 Recent guidelines 
from the European Society of Cardiology (ESC) on VA and the preven-
tion of SCD10 highlight a limited set of high-risk genes in dilated cardio-
myopathy (including FLNC, LMNA, and PLN) for which mutations plus 
LVEF < 50% and an additional risk factor should trigger consideration 
of ICD implantation. While DSP was not recognized as a high-risk 
gene in these guidelines, updated ESC guidelines for the management 
of cardiomyopathies do recognize DSP cardiomyopathy as a high-risk 

subgroup of both dilated cardiomyopathy and the newly defined 
phenotype of non-dilated LV cardiomyopathy and suggest consider-
ation of primary prevention ICD in these patients.36 Our findings like-
wise demonstrate that DSP patients, particularly those with 
manifestations of disease such as left- or right-sided systolic dysfunc-
tion, high PVC burden, or history of NSVT, are at similarly elevated 
risk for VA compared with these other high-risk genotypes.

The DSP risk score likely represents only the first step in individua-
lized risk assessment for DSP patients. As for ARVC patients, many im-
portant modifiers to VA risk will require further study. Athletic activity 
is strongly associated with worsening risk for VA in ARVC,37,38 but to 
what extent this remains true in DSP patients remains unclear. Incident 
arrhythmic risk in ARVC has also been shown to decrease over time,27

but whether this holds true in patients with DSP-related disease re-
quires further study with longitudinal risk modelling. In particular, epi-
sodes of myocardial injury are observed in around 9% of DSP 
patients over the course of their disease, and these episodes are fol-
lowed by a dramatic increase in subsequent arrhythmic risk.4,5,36,39

The extent to which these episodes parallel the ‘hot phases’ of in-
creased ectopy seen in ARVC,40 reflect rapid periods of otherwise nor-
mal disease progression, or represent some other distinct mechanism 

Figure 3 Relationships between the hazard of sustained ventricular arrhythmia events and cut-offs for converting continuous variables to dichotom-
ous variables for (A) 24-h premature ventricular contraction burden, (B) number of inferior and anterior electrocardiogram leads with T-wave inversion, 
(C ) right ventricular systolic dysfunction, and (D) left ventricular ejection fraction. In each case, the hazard for ventricular arrhythmia is assessed relative 
to normal values of the particular variable. LVEF, left ventricular ejection fraction; PVC, premature ventricular contraction; RV, right ventricular; TWI, 
T-wave inversion; VA, ventricular arrhythmia
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leading to increased arrhythmic burden is not clear at this time. Finally, 
specialized imaging such as CMR for assessment of LGE and invasive 
procedures such as programmed ventricular stimulation for assessment 
of arrhythmic inducibility41 and ablation42 have demonstrated im-
proved risk stratification in intermediate-risk ARVC patients for 
whom the decision to implant ICD is ambiguous. While we identified 
a signal suggesting the potential for high-risk LGE pattern to further 
stratify VA risk predictions provided by the DSP risk score, due to 

relatively high missingness in CMR (∼20%), this study was not powered 
to fully elucidate the role of LGE assessment in DSP patients and further 
study is required. Although the incidence of sustained VA in low-risk 
patients with high-risk LGE pattern on CMR was low in the present co-
hort (only 1 of 51 patients experienced VA), VA was still possible in this 
important subset of patients. Nuanced clinical judgement that considers 
high-risk LGE pattern and other potential risk markers not adequately 
captured by the DSP risk score (e.g. syncope deemed to be very likely 
arrhythmic) thus remains an essential part of shared decision-making 
around ICD implantation even in low-risk patients.

Clinical implications
Desmoplakin patients have a higher risk for arrhythmia even relative to 
patients with other forms of arrhythmogenic cardiomyopathy,15,17,18

but not all DSP patients will go on to have VA events. Distinguishing 
low-risk patients unlikely to benefit from ICD placement from high-risk 
patients for whom ICD placement is critical for reducing SCD risk is 
therefore of paramount importance. The DSP risk score offers prog-
nostic information to help guide decision-making around the placement 
of primary prevention ICDs. This type of decision is highly personal, 
however, and patients may have different tolerance for risk based 
upon their age, sex, lifestyle, or cultural background. For this reason, 
the DSP risk score assesses VA risk as a continuous variable rather 
than simply grouping patients into low-, intermediate-, or high-risk cat-
egories. The DSP risk score thus seeks to provide clinicians with the 
data necessary to have more nuanced, data-driven, shared decision- 
making conversations with their patients.

While there is no concrete risk threshold below which DSP patients 
should not receive an ICD, our model demonstrated excellent NPV in 
those patients for whom 5-year VA risk was estimated to be below 5%. 
In fact, no low-risk patients within the external validation cohort 
(n = 26) went on to have incident VA events in the 5 years following 
their initial evaluation. Thus, patients and clinicians may feel reassured 
that a decision to withhold or defer ICD placement based upon 
5-year DSP risk score prediction below 5% is reasonable.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Univariable and multivariable Cox proportional hazard modelling of suspected risk factors for sustained 
ventricular arrhythmia

Variable Univariable CPH (95% CI) P-value Multivariable CPH (95% CI) P-value

Female sex 1.905 
(1.091–3.324)

.023 1.914 
(1.080–3.394)

.03

NSVT on ambulatory monitor 2.801 
(1.738–4.514)

<.0001 1.798 
(1.073–3.011)

.03

LVEF < 50% 2.786 
(1.742–4.456)

<.0001 1.591 
(.958–2.643)

.07

Moderate or severe RV dysfunction 6.503 
(3.199–13.216)

<.0001 6.543 
(2.866–14.939)

<.0001

ln(24-h PVC count) 1.363 
(1.211–1.534)

<.0001 1.266 
(1.117–1.436)

<.0001

Number of ECG leads with T-wave inversion 1.150 
(1.055–1.254)

.002 .978 
(.875–1.092)

.69

Here, only those variables ultimately selected for the DSP risk score were included in multivariable modelling. Presence of LGE on CMR was excluded due to collinearity with LV systolic 
dysfunction (LVEF < 50%) and higher missingness in CMR data. Hazards are shown along with 95% CIs. 
CI, confidence interval; CPH, Cox proportional hazard; ECG, electrocardiogram; LVEF, left ventricular ejection fraction; NSVT, non-sustained ventricular tachycardia; RV, right ventricular.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Clinical utility of the desmoplakin risk score 
assessed in the external validation cohort (n = 86) at two 
risk thresholds

5% predicted 
5-year predicted 

risk for VA

20% predicted 
5-year predicted 

risk for VA

Number below 
risk threshold

26 (30.2%) 72 (83.7%)

Sensitivity 
(95% CI)

92% 
(77–100)

43% 
(15–71)

Specificity 
(95% CI)

37% 
(24–50)

93% 
(86–100)

PPV 
(95% CI)

24% 
(11–38)

49% 
(18–80)

NPV 
(95% CI)

100% 
(100–100)

90% 
(83–98)

Positive 
likelihood ratio

1.47 5.93

Negative 
likelihood ratio

.21 .61

CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value; 
VA, ventricular arrhythmia.
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Limitations
Our study population was drawn from the DSP-ERADOS Network, an 
international collaboration of academic centres from North America, 
Europe, and Australia. The method for identifying patients with P/LP 
DSP variants was defined locally by each contributing centre, and there 
may be between-centre differences in the clinical indications of enrolled 
patients. These patients were predominantly White, and our results 
should consequently be extrapolated with caution to patients from 
other racial or ethnic backgrounds. Our ascertainment from primarily 
tertiary care settings may also have created a referral bias that could 
lead to overestimation of VA risk in a community-derived population. 
This was a retrospective cohort study with variable patient follow-up 
time. Some patients may have been lost to follow-up prior to an initial 
VA event. While this study represents the largest cohort of primary 
prevention DSP patients published to date, statistical power to analyse 
potential arrhythmic risk predictors was limited to approximately five 
variables (based on our requirement for ∼10 VA events per added pre-
dictor); additional arrhythmic risk predictors may exist and warrant fur-
ther study. We did not identify a significant association between 
sustained VA and syncopal events; this could reflect the challenge of 
retrospective adjudication of the aetiology of syncopal events (e.g. va-
gal/orthostatic vs. arrhythmic/unexplained). Additionally, family history 
of SCD was not systematically collected and therefore was not tested 
as a potential risk factor for sustained VA.

As in similar studies, we used a surrogate composite endpoint that 
included appropriate ICD therapy to infer risk of SCD. While most clin-
icians agree that ICD-treated VA represents a severe event, ICD therapies 
are an imperfect substitute for SCD.43 Further study examining the util-
ization of primary prevention ICDs in DSP patients and their ultimate im-
pact on adverse clinical arrhythmic outcomes is warranted. Finally, the 
DSP risk score provides VA risk estimation from the single time of a pa-
tient’s initial clinical evaluation. Arrhythmic risk in ARVC is known to 
change over time,27 and thus DSP patients should be re-evaluated period-
ically. Longitudinal studies are needed to identify the frequency with which 
clinical re-evaluation of DSP patients should be performed.

Conclusion
In this study, we present the DSP risk score, a novel model that le-
verages readily available clinical parameters to generate individualized 
assessments of VA risk in patients with P/LP DSP variants. The DSP 
risk score demonstrated good ability to predict incident-sustained VA 
by 5 years during both model development and subsequent external 
validation. It has the potential to guide the implantation of primary pre-
vention ICDs in this rare but important form of arrhythmogenic heart 
disease. This clinical tool thus represents an important step forward in 
arrhythmic risk assessment that is tailored not just to a patient’s clinical 
phenotype but also to his or her underlying genetic.
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