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BACKGROUND The HeartLogic algorithm (Boston Scientific) has
proved to be a sensitive and timely predictor of impending heart
failure (HF) decompensation.

OBJECTIVE The purpose of this study was to determine whether
remotely monitored data from this algorithm could be used to iden-
tify patients at high risk for mortality.

METHODS The algorithm combines implantable cardioverter-
defibrillator (ICD)–measured accelerometer-based heart sounds,
intrathoracic impedance, respiration rate, ratio of respiration rate
to tidal volume, night heart rate, and patient activity into a single
index. An alert is issued when the index crosses a programmable
threshold. The feature was activated in 568 ICD patients from 26
centers.

RESULTS During median follow-up of 26 months [25th–75th
percentile 16–37], 1200 alerts were recorded in 370 patients
(65%). Overall, the time IN-alert state was 13% of the total obser-
vation period (151/1159 years) and 20% of the follow-up period of
the 370 patients with alerts. During follow-up, 55 patients died
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(46 in the group with alerts). The rate of death was 0.25 per
patient-year (95% confidence interval [CI] 0.17–0.34) IN-alert
state and 0.02 per patient-year (95% CI 0.01–0.03) OUT of the alert
state, with an incidence rate ratio of 13.72 (95% CI 7.62–25.60;
P ,.001). After multivariate correction for baseline confounders
(age, ischemic cardiomyopathy, kidney disease, atrial fibrillation),
the IN-alert state remained significantly associated with the occur-
rence of death (hazard ratio 9.18; 95% CI 5.27–15.99; P ,.001).

CONCLUSION The HeartLogic algorithm provides an index that can
be used to identify patients at higher risk for all-cause mortality.
The index state identifies periods of significantly increased risk of
death.
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Introduction
Implantable cardioverter-defibrillators (ICDs) and defibrilla-
tors for resynchronization therapy (cardiac resynchronization
therapy defibrillator [CRT-D]) are widely adopted for the
treatment of chronic heart failure (HF).1 Some modern
ICDs are equipped with automated algorithms that provide
detailed information on the patient’s HF condition on a daily
basis. Many studies have reported combining ICD diagnos-
tics in order to better stratify and manage patients at risk
for HF events.2–4 In the MultiSENSE (Multisensor Chronic
Evaluation in Ambulatory Heart Failure Patients) study,5 a
novel algorithm for HF monitoring was implemented: the
HeartLogicTM (Boston Scientific, St. Paul, MN) index, which
combines physiological data from multiple ICD-based sen-
sors. The index enabled dynamic assessment of HF, identi-
fying periods when patients were at significantly increased
risk for worsening HF.6 However, no study has explored
whether the index predicts all-cause death. In the present
study, we sought to determine whether remotely monitored
data from this algorithm could be used to identify patients
at high risk for mortality, and whether its predictive ability
was independent of the patient’s demographic and clinical
variables.
Methods
Patient selection
The study was a prospective, nonrandomized, multicenter
evaluation of patients who had received an ICD or CRT-D
having the HeartLogic diagnostic algorithm. Consecutive
HF patients with reduced left ventricular ejection fraction
(�35% at the time of implantation) who had received a de-
vice in accordance with standard indications1 and were
enrolled in the LATITUDE (Boston Scientific) remote moni-
toring platform were included at 26 study centers (full list of
participating centers is given in the Supplemental Appendix)
and underwent follow-up in accordance with the standard
practice of the participating centers. The study protocol did
not mandate any specific intervention algorithm, and physi-
cians were free to remotely implement clinical actions or to
schedule extra in-office visits when deemed necessary.
Data on the clinical events that occurred during follow-up
were collected at the study centers within the framework of
a prospective registry (ClinicalTrials.gov Identifier:
NCT02275637). The Institutional Review Boards approved
the study, and all patients provided written informed consent
for data storage and analysis. The research reported in this pa-
per adhered to the Helsinki Declaration. (The experimental
data used to support the findings of this study are available
from the corresponding author upon request.)
Device characteristics
Commercially available ICD/CRT-Ds equipped with the
HeartLogic diagnostic feature and standard transvenous leads
were used in this study. The details of the HeartLogic algo-
rithm have been reported previously.5 In brief, the algorithm
combines data from multiple sensors: accelerometer-based
first and third heart sounds, intrathoracic impedance, respira-
tion rate, ratio of respiration rate to tidal volume, night heart
rate, and patient activity. Each day, the device calculates the
degree of worsening in sensors from their moving baseline
and computes a composite index. An alert is issued when
the index crosses a programmable threshold (nominal
value 5 16). When the index enters an alert state, the “exit-
alert” threshold is automatically dropped to a recovery value
(nominal value 5 6).
Association between HeartLogic alert state and
death
The objective of the present analysis was to assess the risk of
death in patients who received the system in clinical practice
and to evaluate the performance of the HeartLogic index in
detecting follow-up periods of significantly increased risk
of death. The study endpoint was death due to any cause.
Moreover, we also evaluated the occurrence of death from
cardiovascular causes and the occurrence of appropriate
ICD shock therapies, according to local site adjudication.
HeartLogic index values.16 identified periods as IN an alert
state vs OUT of an alert state.
Statistical analysis
Descriptive statistics are given as mean 6 SD for normally
distributed continuous variables or median [25th–75th per-
centiles] in the case of skewed distribution. Normality of
distribution was tested by the nonparametric Kolmogorov-
Smirnov test. Categorical data are given as percentages.
Analysis of the time to the first episode was made by the
Kaplan-Meier method. Cox proportional hazards models
were used to determine the association between the occur-
rence of death, baseline characteristics, and the average
values of contributing sensors, and to estimate hazard ratio
(HR) and 95% confidence interval (CI). All variables display-
ing statistical significance (P,.05) were entered into a multi-
variate regression analysis. Death rates were calculated
separately during IN and OUT alert states in terms of the ratio
between the total count of deaths occurring in each state and
the respective patient follow-up durations, and were ex-
pressed as events per patient-year. To evaluate the perfor-
mance of the index in detecting follow-up periods of
significantly increased risk of death, we compared the
IN- and OUT-of-alert periods in terms of time to death by
means of the Anderson-Gill model, an extension of the
Cox proportional hazards model that takes into account mul-
tiple evaluations in patients. The model was adjusted for
those baseline variables that proved to be associated with
the occurrence of death on univariate analysis. IN-alert pe-
riods started when the HeartLogic index crossed the
threshold and ended at the time of death, or were censored
when the index decreased to below the recovery threshold
(or at the end of follow-up). OUT-of-alert periods started
on the day of HeartLogic activation (at the end of the initial-
ization period) or at the end of a previous IN-alert period and
ended at the time of death, or were censored when the index
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Table 1 Demographics and baseline clinical parameters of the
study population (N 5 568)

Male 453 (80)
Age (y) 69 6 10
Ischemic etiology 285 (50)
NYHA functional class
I 36 (6)
II 351 (62)
III 171 (30)
IV 10 (2)

LV ejection fraction (%) 32 6 9
AF history 196 (35)
AF on implantation 100 (18)
Diabetes 167 (29)
COPD 89 (16)
Chronic kidney disease 153 (27)
Hypertension 334 (59)
b-Blocker use 520 (92)
ACE-I, ARB, or ARNI use 536 (94)
Diuretic use 506 (89)
Antiarrhythmic drug use 116 (20)
CRT device 410 (72)
Primary prevention 500 (88)

Values are given as n (%) or mean 6 SD.
ACE-I 5 angiotensin-converting enzyme inhibitor; AF 5 atrial fibrilla-

tion; ARB 5 angiotensin II receptor blocker; ARNI 5 angiotensin
receptor-neprilysin inhibitor; COPD 5 chronic obstructive pulmonary dis-
ease; CRT 5 cardiac resynchronization therapy; LV 5 left ventricle; NYHA
5 New York Heart Association.

D’Onofrio et al Multisensor HF Monitoring and All-Cause Death 3
rose above the threshold (or at the end of follow-up). All sta-
tistical analyses were performed using R: a language and
environment for statistical computing (R Foundation for Sta-
tistical Computing, Vienna, Austria).
Table 2 Univariate analysis of baseline variables and average
sensors associated with death from any cause

HR 95% CI P value
Results
Study population
From December 2017 to June 2021, HeartLogic was acti-
vated in 568 patients who had received an ICD (n 5 158)
or CRT-D (n 5 410). Baseline clinical variables of all pa-
tients in the present analysis are listed in Table 1.
Age 1.07 1.03–1.10 ,.001
Male gender 0.81 0.42–1.56 .526
NYHA functional class 1.38 0.91–2.11 .136
Ischemic heart disease 1.78 1.03–3.06 .039
LV ejection fraction 0.99 0.96–1.02 .605
AF on implantation 1.90 1.07–3.37 .029
Hypertension 0.73 0.43–1.24 .249
Pulmonary disease 1.60 0.84–3.02 .153
Diabetes 1.02 0.58–1.80 .955
Chronic kidney disease 2.46 1.44–4.19 .001
CRT device 0.99 0.54–1.81 .965
�1 HeartLogic alert 2.09 1.03–4.27 .043
Time in alert �20% 4.15 2.42–7.10 ,.001
S3 amplitude 3.65 1.94–6.86 ,.001
S1 amplitude 0.88 0.65–1.19 .882
Thoracic impedance 0.95 0.92–0.98 .001
Respiratory rate 1.22 1.09–1.36 ,.001
Night heart rate 1.07 1.03–1.11 ,.001
Patient activity 0.97 0.96–0.98 ,.001

CI 5 confidence interval; HR 5 hazard ratio; other abbreviations as in
Table 1.
Follow-up
During median follow-up of 26 months [16–37], 55 patients
(10%) died. According to local site adjudication, 33 deaths
were from cardiovascular causes. One or more appropriate
ICD shocks were documented in 74 patients (13%). The
HeartLogic index crossed the threshold value 1200 times
(0.71 alerts per patient-year) in 370 patients. The time in
the IN-alert state was 13% of the total observation period
in the overall population and 20% of the follow-up period
in the 370 patients with alerts. The centers did not adjust
the threshold, which was set to the nominal value in all pa-
tients. Atrial fibrillation history was more frequent in patients
with alerts (158 [43%] vs 38 [19%]; P ,.001), as well as
chronic kidney disease (120 [32%] vs 33 [17%]; P ,.001).
However, the use of CRT was similar between patients
with and those without alerts during follow-up (273 [74%]
vs 137 [69%]; P5 .245). In the CRT group, median percent-
age of biventricular pacing was similar between patients with
and those without alerts (98% [95%–100%] vs 99% [96%–

100%]; P 5 .397).
Association between HeartLogic alerts and death
Of the 55 patients who died, 46 (84%) had experienced �1
alert episodes during follow-up. Sensitivity of a time IN alert
�20% for detecting death was 56% (31/55), and specificity
was 77% (394/513). Rate of death was 0.25 per patient-
year (95% CI 0.17–0.34) with the HeartLogic IN the alert
state and 0.02 per patient-year (95% CI 0.01–0.03) OUT of
the alert state, with an incidence rate ratio of 13.72 (95%
CI 7.62–25.60; P ,.001). Figure 1 shows the Kaplan-
Meier analysis of time to death for any cause from device im-
plantation. Patients are stratified according to the occurrence
of at least 1 HeartLogic alert (HR 2.08; 95% CI 1.16–3.73;
P 5 .039) and to a time IN alert �20% (HR 4.07; 95% CI
2.19–7.54; P,.001). Kaplan-Meier analysis of patients strat-
ified according to the occurrence of�1 HeartLogic alerts and
according to different levels of time IN alert is shown in
Supplemental Figure 1. The occurrence of death from cardio-
vascular causes was significantly associated with at least 1
HeartLogic alert during follow-up (HR 6.07; 95% CI 2.84–
12.97; P 5 .004) and with a time IN alert �20% (HR 5.59;
95% CI 2.51–12.44; P ,.001) (Supplemental Figure 2).
Moreover, the occurrence of appropriate ICD shock therapies
was associated with �1 HeartLogic alert (HR 2.44; 95%CI
1.49–3.97; P 5 .003) and with a time IN alert �20% (HR
2.01; 95% CI 1.18–3.43; P5 .003). The results of the regres-
sion analysis of variables associated with death are listed in
Table 2. The occurrence of at least 1 HeartLogic alert and a
time IN alert�20% were significantly associated with death.
Among the contributing sensors, higher average values of



Figure 1 Kaplan-Meier analysis of time to death due to any cause. Patients are stratified according to the occurrence of at least one HeartLogic alert (A) and a
time IN alert �20% (B).
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third heart sound amplitude, respiratory rate, and night heart
rate were associated with death, as well as lower thoracic
impedance and patient activity. Other baseline variables
associated with death were age, ischemic cardiomyopathy,
chronic kidney disease, and atrial fibrillation on implantation.
Figure 2 shows a Kaplan-Meier plot of time to death after the
start of IN- and OUT-of-alert states (HR 11.00; 95%CI 6.19–
19.48; P ,.001). After multivariate correction for age,
ischemic cardiomyopathy, chronic kidney disease, and atrial
fibrillation on implantation, the IN-alert state remained
significantly associated with the occurrence of death due to
any cause (HR 9.18; 95% CI 5.27–15.99; P ,.001)
(Figure 3).
Discussion
In the present study, we demonstrated the ability of the Heart-
Logic algorithm to identify subjects at high risk for death
among HF patients who had received ICD and CRT-D.
The occurrence of at least 1 HeartLogic alert and a time IN
Figure 2 Kaplan-Meier plot of time to death due t
alert �20% were significantly associated with mortality
due to any cause. Moreover, the rate of fatal events was sub-
stantially higher with the HeartLogic IN the alert state, and
the association between the alert state and mortality was
confirmed even after correction for baseline confounders.

In the management of HF patients, prognostic stratifica-
tion is important in order to identify the ideal time for referral
to specialists, to plan treatment and follow-up strategies, and
to properly convey expectations to patients and families.1

However, predicting mortality in an HF population is chal-
lenging. HF has multiple etiologies with different risk pro-
files and has an uneven clinical course. Numerous clinical
variables and investigations are needed in order to obtain
prognostic information and to guide potential therapy.1

Moreover, although prognostic scores have been proposed
for HF patients and more specifically for patients with
ICD,7,8 they are of limited use in everyday practice. Their
calculation can be onerous, and the information provided is
static and does not reflect the clinical course of the disease.
Modern ICD diagnostic algorithms continuously measure
o any cause in the IN- and OUT-of-alert states.



Figure 3 Results of the time-dependent Cox model. Association between IN-alert state and death due to any cause, after adjustment for clinical variables.
AF 5 atrial fibrillation; HR 5 hazard ratio.
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clinical variables2–5 and have been designed to provide early
warning of changes in HF status and to allow prompt
intervention to prevent disease progression. Previous
retrospective analyses have reported an association between
all-cause mortality risk and the high-risk status defined by a
remote monitoring system from another manufacturer, based
on monthly data downloads instead of an alert-based
approach.9,10 The multiparameter algorithm used in the pre-
sent analysis combines data from multiple sensors, which re-
cord parameters (heart rate and respiratory rate, rapid shallow
breathing index, third and first heart sounds, thoracic imped-
ance and activity) that are objective measurements of the un-
derlying pathophysiology associated with signs and
symptoms of worsening HF.11–15 This system displayed
high sensitivity and long warning times both in the
validation study5 and in subsequent clinical experiences.16–18

The IN- or OUT-of-alert state defined by the algorithm has
also proved able to identify periods when patients are at
significantly increased risk for worsening HF,6,19 potentially
allowing resources to be better targeted to this vulnerable pa-
tient population. Although the ICD index was designed for
the early detection of individuals at increased risk for HF
events, we demonstrated that its use may help to identify
patients at high risk for death due to any cause. During Heart-
Logic alerts, a previous study measured higher levels of N-
terminal pro–B-type natriuretic peptide18 (ie, a sign of poor
prognosis).20–22 In our study, we observed a 2-fold higher
risk of death among patients who had experienced at least
1 HeartLogic alert and a 4-fold higher risk among patients
who had spent .20% of their follow-up period IN the alert
state. Moreover, the risk of death was also associated with
the average values of components of the combined index.
In our study, the most frequent cause of death was cardiovas-
cular. The algorithm demonstrated its ability to identify car-
diovascular death, in addition to the higher risk of ICD shock
therapies. These results further confirm the sensitivity of the
algorithm, specifically for HF disease progression. Most fatal
events were plausibly the outcome of refractory HF events,
which may also have fostered ventricular arrhythmias.

Utilizing ICD-measured data for prognostic stratification
is ideal. They are collected automatically by the devices
and are continuously available through remote monitoring.
Current guidelines recommend that multidisciplinary man-
agement programs should take a holistic approach to the pa-
tient rather than focusing solely on HF to reduce the risk of
mortality.1 However, the prevalence of death from cardiovas-
cular causes and the ability to identify such events seem to
suggest the use of ICD-measured data mainly for the manage-
ment of cardiovascular therapies. They may help clinicians
make decisions on the frequency of monitoring and focus
their attention on ensuring that the patient receives
guideline-directed therapies designed to improve prognosis
rather than prevent an immediate decompensation. Although
the principal treatment pattern in response to HF alerts typi-
cally os augmentation of decongestive treatment,23 an effort
should be made to enhance medical therapies such as
angiotensin-converting enzyme inhibitors, angiotensin re-
ceptor blockers, or angiotensin receptor-neprilysin inhibitors,
reaching target doses with physiological monitoring. More-
over, personalized prognostic data may help the clinician to
formulate an indication for a coronary revascularization
attempt or aortic or mitral valve intervention.1 Moreover,
the patient’s life expectancy may be considered, in order to
discuss with the patient whether the ICD generator should
be replaced.24 However, additional work is required in order
to test the efficacy of specific interventions to delay or
manage the patient’s end of life.
Study limitations
The main limitation of this study is its observational design.
We investigated the performance of a specific ICD algorithm,
so the generalizability of the results to other systems remains
to be demonstrated. Although only HeartLogic-enabled
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devices were included, no selection bias was introduced
because patients were enrolled consecutively, and device
choice and activation of the algorithm were not driven by clin-
ical characteristics. Moreover, physicians were not blinded to
the HeartLogic index, and no predetermined actions were pre-
scribed in response to alerts; this may have introduced a bias
into our analysis of the risk stratification ability of the algo-
rithm. In addition, the analysis of the predictive performance
of the algorithm with regard to cardiovascular–related mortal-
ity presents limitations. The smaller number of events could
make the sample size inadequate, and identifying the leading
cause of death is uncertain within the framework of a multi-
center registry in clinical practice. Finally, some patients
died in the hospital without transmitting data during the period
of hospitalization, and some of these hospitalized patients
might have entered the IN-alert state only after admission.
Our analysis considered the alert state before admission. We
believe that, when evaluating the predictive ability of remotely
monitored data, the relevance of data collected when the pa-
tient already is in the hospital is limited.
Conclusion
This study demonstrated the ability of the HeartLogic algo-
rithm to provide an index that can be used to identify patients
at higher risk for all-cause death. The index state identifies
periods of significantly increased risk of death in patients
who have received an ICD or CRT-D in clinical practice.
Appendix
Supplementary data
Supplementary data associated with this article can be found
in the online version at https://doi.org/10.1016/j.hrthm.2023.
03.026.
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