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Abstract: Moringa oleifera is widely grown throughout the tropics and increasingly used for its
therapeutic and nutraceutical properties. These properties are attributed to potent antioxidant and
metabolism regulators, including glucosinolates/isothiocyanates as well as flavonoids, polyphenols,
and phenolic acids. Research to date largely consists of geographically limited studies that only
examine material available locally. These practices make it unclear as to whether moringa samples
from one area are superior to another, which would require identifying superior variants and
distributing them globally. Alternatively, the finding that globally cultivated moringa material is
essentially functionally equivalent means that users can easily sample material available locally. We
brought together accessions of Moringa oleifera from four continents and nine countries and grew them
together in a common garden. We performed a metabolomic analysis of leaf extracts (MOLE) using
an LC-MSMS ZenoTOF 7600 mass spectrometry system. The antioxidant capacity of leaf samples
evaluated using the Total Antioxidant Capacity assay did not show any significant difference between
extracts. MOLE samples were then tested for their antioxidant activity on C2C12 myotubes challenged
with an oxidative insult. Hydrogen peroxide (H2O2) was added to the myotubes after pretreatment
with different extracts. H2O2 exposure caused an increase in cell death that was diminished in
all samples pretreated with moringa extracts. Our results show that Moringa oleifera leaf extract is
effective in reducing the damaging effect of H2O2 in C2C12 myotubes irrespective of geographical
origin. These results are encouraging because they suggest that the use of moringa for its therapeutic
benefits can proceed without the need for the lengthy and complex global exchange of materials
between regions.

Keywords: Moringa oleifera leaf extract (MOLE); LC-MSMS ZenoTOF 7600 system metabolomics
analysis; C2C12 skeletal muscle cells; oxidative stress

1. Introduction

The natural products of Moringa oleifera Lam. (M. oleifera, family Moringaceae, or-
der Brassicales, Figure 1) have been the subject of significant research recently, and their
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biological effects have been extensively investigated in various in vivo and in vitro mod-
els [1–5]. Many bioactive molecules are present in different parts of the plant, such as the
seeds, roots, fruits, and leaves. These molecules demonstrate many beneficial features,
acting as antioxidants, antimicrobial agents, and metabolic regulators [6–8]. Samples from
Moringa oleifera have antioxidant features that are due to the presence of isothiocyanates,
tannins, saponins, flavonoids, and terpenoids, especially in the leaves [6–9]. Given the
promise of the extraordinary efficacy of its bioactive molecules, in particular some peculiar
isothiocyanates, M. oleifera is of interest in multiple applications worldwide. The isothio-
cyanate moringin, produced following hydrolysis of the glucosinolate glucomoringin by
the enzyme myrosinase, provides potent anti-inflammatory and indirect cytoprotective
antioxidant activity. This is of particular interest in the use of Moringa oleifera extracts for
therapeutic purposes for various pathologies [9–11].

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 2 of 21 
 

 

1. Introduction 
The natural products of Moringa oleifera Lam. (M. oleifera, family Moringaceae, order 

Brassicales, Figure 1) have been the subject of significant research recently, and their 
biological effects have been extensively investigated in various in vivo and in vitro models 
[1–5]. Many bioactive molecules are present in different parts of the plant, such as the 
seeds, roots, fruits, and leaves. These molecules demonstrate many beneficial features, 
acting as antioxidants, antimicrobial agents, and metabolic regulators [6–8]. Samples from 
Moringa oleifera have antioxidant features that are due to the presence of isothiocyanates, 
tannins, saponins, flavonoids, and terpenoids, especially in the leaves [6–9]. Given the 
promise of the extraordinary efficacy of its bioactive molecules, in particular some 
peculiar isothiocyanates, M. oleifera is of interest in multiple applications worldwide. The 
isothiocyanate moringin, produced following hydrolysis of the glucosinolate 
glucomoringin by the enzyme myrosinase, provides potent anti-inflammatory and 
indirect cytoprotective antioxidant activity. This is of particular interest in the use of 
Moringa oleifera extracts for therapeutic purposes for various pathologies [9–11]. 

 
Figure 1. Images of the habit (green on the map), flowers, leaves, fruits, seeds and areas in which 
the “miracle tree” Moringa oleifera Lam. is recorded as being cultivated (data from 
https://www.gbif.org/ accessed on 17 January 2024). 
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medicine [12]. While wild populations that are unequivocally ancestral to today�s 
cultivated M. oleifera have yet to be located [10], documented millennia-old use makes it 
almost certain that M. oleifera had its original wild range in what is now India. Because M. 
oleifera is well established in traditional cuisine in the Philippines, and because one of the 
most common names in the Philippines, malunggay, is very similar to “murungai,” a 
name that has been documented in use in Tamil Nadu for hundreds of years, it seems 
likely that M. oleifera was moved to the Philippines at least hundreds of years ago. More 

Figure 1. Images of the habit (green on the map), flowers, leaves, fruits, seeds and areas in which the
“miracle tree” Moringa oleifera Lam. is recorded as being cultivated (data from https://www.gbif.org/
accessed on 17 January 2024).

In the global implementation of M. oleifera in dietary and other applications, a persis-
tent question regards the geographical variation in applied properties. The oldest docu-
mentation of M. oleifera comes from ancient Indian texts mentioning its use in medicine [12].
While wild populations that are unequivocally ancestral to today’s cultivated M. oleifera
have yet to be located [10], documented millennia-old use makes it almost certain that
M. oleifera had its original wild range in what is now India. Because M. oleifera is well
established in traditional cuisine in the Philippines, and because one of the most common
names in the Philippines, malunggay, is very similar to “murungai”, a name that has been
documented in use in Tamil Nadu for hundreds of years, it seems likely that M. oleifera was
moved to the Philippines at least hundreds of years ago. More recent movements in the
colonial period saw moringa moved to the New World tropics, across the Pacific, and into
Africa, via Indian railroad workers in English African colonies. Overlain by this pattern
of distribution of M. oleifera resulting from human migration are more recent movements.
These more recent movements have intensified in the last 20 years as agriculturists purchase
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seeds from international sources and import them to their home countries to grow moringa
for commercial use. Given this history of movement of plant material, it is not clear to what
degree M. oleifera grown in different parts of the world has different applied properties.

Across M. oleifera’s vast cultivated range across the world’s tropics, there are two dif-
ferent possible scenarios regarding variation in its applied properties. These two scenarios
have very different implications for scientific research on the applied use of M. oleifera.

One situation considers the genetic differentiation that occurred in the expansion of
the species into the tropical zone. Natural selection under the particular conditions of soil,
climate, and even agricultural or management practices, could lead to local adaptation,
given that M. oleifera is grown so extensively in such geographically distant locales with
such differing conditions. Local adaptation would mean that M. oleifera grown in one
area could be very different in applied properties as compared to those in another area.
Therefore, the “moringa” studied by one research group sampling their local material could
be very different from the “moringa” studied by another. Even more significantly, the
moringa implemented in applications such as humanitarian nutritional interventions or for
use in pharmacological clinical studies or nutraceutical applications might not offer the
benefits intended. This “local adaptation” scenario seems plausible given the very wide
cultivated range of M. oleifera.

The other possibility is that the M. oleifera material obtained from sampling in different
parts of the tropical zone is more or less genetically similar throughout the world. This “low
diversity domesticated” situation is plausible given that most M. oleifera material worldwide
is used outside of its center of origin, India. Presumably the highest genetic diversity, and
therefore diversity in applied properties, is found in India. From this center of diversity,
movement around the world has plausibly led to successive losses of genetic diversity
with each transference to a new location. Even within India, all of the true M. oleifera is
domesticated. Domestication frequently involves a reduction in genetic diversity, often a
very drastic one. Therefore, even within India, even though we still expect M. oleifera to
have its highest genetic diversity there, the M. oleifera germplasm there almost certainly
represents a significant reduction as compared to its as-yet unidentified wild progenitor.
From this point of view, it is plausible that genetic variation in M. oleifera cultivated
worldwide is sufficiently low that its applied properties are comparable wherever the plant
is sampled in the world.

It is essential for applied studies in Moringa to distinguish between the “local ada-
patation” and “low diversity domesticated” situations because of their very different
implications for the use and management of Moringa germplasm resources. If popula-
tions worldwide are highly distinct from one another in their properties of interest, then
this requires careful screening of global germplasm in order to identify the variants with
the most suitable characteristics for a given application. On the other hand, finding that
worldwide variants are more or less comparable with regard to a given application makes
implementation of M. oleifera much easier. It means that, for a given application, locally
available plant material will be suitable for a given use, obviating the need for obtaining
specific variants from other parts of the world, often at significant expense and bureaucracy.

Herein, we provide an example of how this issue can be addressed with regard to
antioxidant effects with a common garden trial of M. oleifera material from diverse global
provenances. One of the most important applications of M. oleifera worldwide is as dietary
supplements and “nutraceutical” foods in managing chronic pre-pathological conditions
such as hypercholesterolemia, insulin resistance, and inflammation. These conditions,
whose onset is exacerbated by high levels of reactive oxygen species, have been shown to
be reduced by the antioxidative effect of flavonoids and other glycosides present in moringa
extracts [13–16]. Phenolic acids (e.g., chlorogenic acid and ferulic acid) are also present at
moderate concentrations in extracts of Moringa oleifera leaves. These molecules contribute
effectively as primary antioxidants, for example, by inactivating lipid free radicals or by
acting in the prevention of the decomposition of hydroperoxides into free radicals [17–19].
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Oxidative insult causes an imbalance in cellular redox homeostasis which, if not correctly
counterbalanced, causes cellular damage that can lead to a pathological state [20].

In an effort to prevent or contain such harmful imbalances, a considerable amount
of research has focused on testing nutritional strategies, especially for tissues particularly
exposed to oxidative stress such as skeletal muscle. This research aims to demonstrate that
supplementation with these extracts is effective in improving physical capabilities, such as a
reduction in fatigue and increased exercise endurance [21–24]. In physiological conditions,
ROS are maintained at low levels by several types of antioxidants. Among them, an
important role is played by endogenous antioxidant enzymes (e.g., superoxide dismutase
(SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione transferase (GST)) and
endogenous antioxidant molecules (mainly by the thiol system, glutathione (GSH), and
thioredoxin (Trx)). In this context, manipulating concentrations of dietary antioxidants
(e.g., vitamins, polyphenols, and flavonoids) provides a readily implemented means of
intervention [25–30]. During intense or unaccustomed exercise, the high production of
ROS ultimately leads to oxidative stress that causes myofibril damage with the consequent
development of fatigue, a phenomenon that many sports practitioners experience and
that leads to a deterioration in exercise performance. Muscle damage is evidenced by an
increase in biomarkers of oxidation in both skeletal muscle and the blood [31,32]. Recently,
we demonstrated that Moringa oleifera leaf extract (MOLE) improved oxidative capacity in
C2C12 myotubes via the activation of the SIRT1-PPAR [33] and showed a beneficial effect on
the antioxidant system of skeletal muscle cells through the induction of the nuclear factor
erythroid 2-related factor (Nrf2) and its target gene heme oxygenase-1 (HO-1) pathway [34],
restoring the redox status (total free thiols, Trx, and GSH/GSSG ratio) and increasing the
antioxidant enzymatic system (CAT, SOD, GPx, and GST), thereby significantly reducing the
thiobarbituric acid reactive substance (TBAR) and carbonylated protein (PrCAR) levels [35].

Given the very broad importance of ameliorating exercise-induced muscle damage,
the use of M. oleifera as a nutritional supplement in counteracting the negative effects of
ROS in muscle cells provides an excellent study system for evaluating variation associated
with geographical provenance. Research to date largely consists of geographically limited
studies that only examine materials available locally [36]. These practices make it unclear
as to whether moringa samples from one area are superior to another, which would require
identifying superior variants and distributing them globally. Alternatively, finding that
globally cultivated moringa material is essentially functionally equivalent means that users
can simply sample material available locally.

Here, we used ten samples of M. oleifera from a wide range of geographical prove-
nances to test whether or not their levels of metabolite variation are very high or whether
the samples are reasonably similar in antioxidant performance. The provenances examined
included India and the Philippines in the area of traditional ancient M. oleifera cultivation.
In Africa, we included Kenya, South Africa, and Madagascar, all areas with documented
immigration from different parts of India. In the tropical Pacific region, we sampled Fiji
and Réunion Island, also areas within the Indian diaspora. Finally, in the New World, we
sampled M. oleifera grown on the Pacific coast of Mexico and the Caribbean coast of Colom-
bia. Colonial records suggest that M. oleifera reached the New World on Spanish galleons
along the Manila-Acapulco route. We grew these samples together in a common garden;
finding that samples differ markedly in their properties despite growing under identical
conditions would be consistent with the “local adaptation” scenario. To reflect the sorts of
materials that are commercially available and often used in nutritional applications, we also
included a purchased, commercial Moringa oleifera leaf powder (PureBodhi Nutraceuticals
Ltd., London, UK) for comparison.

Thus, in this study, a metabolomics approach using LC-MS zenoTOF was adopted
to facilitate the metabolite profiling of MOLE extracts, followed by Principal Component
Analysis (PCA) to highlight correlations and discriminate samples of different geographical
origins. Metabolomics is regarded as the main strategy for studying large numbers of
samples. It is usefully coupled with LC-MS/MS techniques, which provide rapid and
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convenient methods for the simultaneous analysis of metabolite fingerprinting and quan-
tification [37–39].

Subsequently, the antioxidant capacity of the leaf samples was evaluated using the
Total Antioxidant Capacity assay.

Finally, the different MOLE extracts were compared with one another for their antiox-
idant activity on C2C12 myotubes subjected to an oxidative insult. Hydrogen peroxide
(H2O2) was added to myotubes after pretreatment with different extracts and cell viability
was assayed.

2. Results
2.1. Cultivation of Moringa oleifera Trees and Leaf Sampling

We brought together several accessions of Moringa oleifera from 4 continents and 9 coun-
tries (Table 1, Figure 2) and grew them together in a common garden, the International
Moringa Germplasm Collection (Jalisco, Mexico) until reaching mature size. Leaf samples
were then collected and immediately dried in a large quantity of silica gel desiccant, fol-
lowing previous work that shows that silica gel drying provides excellent preservation of
glucosinolates and myrosinase [9], during the dry season and stored in a dry environment
until used to obtain the extracts.

Table 1. Moringa oleifera sampling.

IMGCC 1 Accession Country of Origin Locality

1 Madagascar Tolagnaro

2 Mexico Mérida, Yucatán

4 Kenya Isiolo Town, Isiolo County

34 Fiji Suva, Viti Levu

82 Réunion Saint-Leu, Île de la Réunion

324 South Africa Commercial nursery

362 Philippines Mabini Town, Batangas Province

382 India Jodhpur, Rajasthan

383 Colombia Cartagena, Departamento de Bolívar
1 International Moringa Germplasm Collection accession number.
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2.2. LC-MSMS ZenoTOF MOLE Qualitative Profiling

Qualitative profiling was carried out on a ZenoTOF 7600 system interfaced with
ultra-high performance liquid chromatography (SCIEX, Framingham, MA, USA).

Chromatographic separation was optimized using a Kintex F5 column (150 mm × 2.1 mm,
2.6 µm, Phenomenex, Torrance, CA, USA). The optimized gradient was as follows: at 0 min,
0.2% buffer A; at 15 min, 95% buffer A. Buffer A was water acidified with 0.1% formic
acid, while buffer B was acetonitrile (ACN) acidified with 0.1% formic acid. The flow rate
was 0.2 mL/min, and the column oven was maintained at 40 ◦C. Five microliters of each
sample were injected and acquired using Information-Dependent Acquisition (IDA), while
for digital fingerprinting, the preferred acquisition mode was SWATH data-independent
acquisition (DIA) analysis. The source parameters were as follows: CUR = 30 psi, CAD = 7,
IS = −4500 V, TEM = 400 ◦C, GS1 = 50 psi and GS2 = 50 psi. Data were processed using
SCIEX OS software, version 3.3 (SCIEX, Framingham, MA, USA). The SCIEX Natural
Products 1.6 Library (SCIEX, Framingham, MA, USA) and NIST 2017 library were used
to search compound spectra saved to various databases. Univariate and multivariate
statistical analyses were performed using MarkerView software, version 1.3.1 (SCIEX,
Framingham, MA, USA).

At the first stage of this study, aiming for a comprehensive metabolomic analysis, Prin-
cipal Component Analysis (PCA) with a non-targeted approach was used. Subsequently,
a Partial Least Squares-Discriminant Analysis (PLS-DA) was performed to visualize the
discrimination of various Moringa samples based on their MS signals. The results are
shown in Figure 3. The score plot (Figure 3, left) clearly shows that UK samples (in the
red circle) are located far away from the others at the most highly negative D1 and D2
values. Similarly, the samples from Colombia (yellow circle) were discriminated from
the others, with them being located at the most positive D1 values. Another cluster was
located at the mostly highly negative D2 values (after the UK samples), made up of samples
from Réunion and Fiji (blue circle). The loading plot (Figure 3, right) showed the features
responsible for sample discrimination. As examples, we focus on features m/z 353 (1078)
(Figure 4), feature m/z 609 (Figure 5), and feature m/z 570 (Figure 5). Surprisingly, by
extracting the feature at m/z 353, we found 2 peaks at different retention times (Figure 4
XIC panels; 4.9 and 5.4 min) showing different trends among the Moringa samples. UK
samples overexpressed the feature at 5.4 min and had an opposite trend for the feature
at 4.9 min. TOF-MS panels showed the same accurate mass for both features, while the
TOF MS/MS panels highlighted a different fragmentation pattern. According to library
matching (SciexOS software version 3.3—SCIEX Natural Products 1.6 Library (SCIEX) and
NIST 2017 library), these isomers were identified as cryptocholorogenic acid (Rt 5.4 min)
and neochlorogenic acid (Rt 5 min).
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With regard to the feature at m/z 609, the plot profile (Figure 5, top panel) shows
overexpression only in the Colombia samples. Library matching points to this feature
being rutin.

Instead, the feature at m/z 570 exhibited a higher trend in the Kenya and Colombia
samples, followed by those from India and Mexico. This feature did not match with any
library entries, but TOF MS and TOF MS/MS spectra in accurate mass suggest gluco-
moringin. For confirmation, we used Formula Finder and Chemspider tools in SciexOS
software (SciexOS software version 3.3). Figure 6 shows the Chemspider results, which
confirm the matching with glucomoringin.

With the aim to deeper profile the MOLE extracts, both workflows, DDA and DIA
(ZenoSWATH), were used. ZenoSWATH allowed for more confident identification in the
case of very low abundance secondary metabolites. The detection of very low-abundance
metabolites is enhanced by searching for precursor ions and subsequently detecting their
diagnostic fragment ions with accurate mass measurements. An example is shown in
Figure 7. By monitoring the transition from m/z 577 to m/z 289, we were able to detect
and confidently identify three isomers of procyanidns with retention times of 5.4, 5.7, and
6.2 min.
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In this way, we were able to putatively identify around 77 metabolites within MOLE
samples with different percentages (Tables 2 and 3).
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Table 2. Relative percentage of the presence of the different 77 metabolites identified in the different
MOLE samples divided by groups of molecules (glucosinolates/isothiocyanates, flavonoids, phenolic
acids, and others).

Colombia Fiji India Kenya Madagascar Mexico Philippines Reunion South
Africa UK

Glucosynolates/isothicianates %
hydroxybutyl (390.05_2.1) 0.05 0.01 0.01 0.10 0.24 0.02 0.01 0.02 0.01 0.00
Glucomoringin (570.1_4.6) 17.00 5.93 9.71 24.22 4.77 9.00 4.67 10.08 8.56 10.31

Glucosoonjnain (586.09_4.6) 0.06 0.02 0.03 0.07 0.02 0.03 0.01 0.03 0.02 0.03
4-O-acetylrhamnopyranosyloxybenzyl-

GS 1 (612.11_5.2) 28.91 25.85 34.59 0.08 24.15 34.88 33.59 20.01 22.63 22.34

4-O-acetylrhamnopyranosyloxybenzyl-
GS 2 (612.11_4.8) 3.18 2.99 3.58 0.01 1.91 2.90 2.81 3.14 2.43 6.10

4-O-acetylrhamnopyranosyloxybenzyl-
GS 3 (612.11_4.9) 1.40 1.47 1.79 0.01 0.86 1.16 1.16 1.59 1.35 3.12

4-O-acetylglucopyranosyloxybenzyl-GS 1
(628.1_5.1) 0.10 0.06 0.11 0.00 0.07 0.10 0.10 0.05 0.06 0.10

4-O-acetylglucopyranosyloxybenzyl-GS 2
(628.1_5.2) 0.02 0.02 0.02 0.00 0.03 0.04 0.03 0.01 0.01 0.02

4-O-acetylglucopyranosyloxybenzyl-GS 3
(628.1_4.7) 0.02 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.03

4-O-acetylglucopyranosyloxybenzyl-GS 4
(628.1_4.8) 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.02

C22H41O15NS3 (654.16_6.1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
C22H41O15NS3 bis (654.15_6.1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Glucoputranjivin (360.04_2.1) 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00
Glucoconringiin (390.05_2.1) 0.05 0.01 0.01 0.10 0.24 0.02 0.01 0.02 0.01 0.00

Glucosinalbin1 (424.04_4.6) 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01
Glucoalyssin (450.06_5.2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Colombia Fiji India Kenya Madagascar Mexico Philippines Reunion South
Africa UK

Flavonoids %
Pinocembrin 1 (255.07_8.4) 0.01 0.00 0.00 0.02 0.02 0.01 0.01 0.00 0.01 0.03
Pinocembrin 2 (255.07_8.1) 0.01 0.00 0.00 0.02 0.01 0.01 0.01 0.01 0.01 0.02

Kaempferol (285.04_9) 0.01 0.02 0.05 0.02 0.06 0.01 0.05 0.03 0.03 0.04
Catechin (289.07_5.8) 0.15 0.01 0.01 0.11 0.01 0.03 0.07 0.00 0.02 0.00

Epicatechin (289.07_5.5) 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Salidroside (299.11_5) 0.04 0.02 0.03 0.13 0.02 0.04 0.03 0.03 0.04 0.06
Quercetin (301.04_8.3) 0.03 0.07 0.01 0.03 0.08 0.04 0.02 0.06 0.04 0.04

Isorhamnetin (315.05_9.1) 0.01 0.04 0.02 0.03 0.04 0.04 0.01 0.05 0.03 0.02
Esculin (339.07_5.3) 0.06 0.06 0.05 0.06 0.02 0.04 0.05 0.13 0.05 0.12

Puerarin 1 (415.1_6.9) 0.01 0.01 0.00 0.02 0.02 0.01 0.01 0.01 0.01 0.01
Puerarin 2 (415.1_7.5) 0.01 0.01 0.00 0.02 0.03 0.00 0.01 0.01 0.01 0.01

Vitexin (431.1_6.4) 0.33 0.41 1.12 1.63 2.00 2.01 1.32 1.83 1.52 1.22
Isovitexin (431.1_6.6) 0.69 0.54 1.49 2.45 2.68 2.80 1.78 2.20 2.16 1.38

Genistin (431.1_7.6) 0.01 0.01 0.03 0.01 0.03 0.02 0.02 0.02 0.02 0.01
Astragalin (447.09_7) 2.03 2.50 8.97 2.67 8.98 0.95 6.48 2.41 6.52 4.50

orientin_2 (447.09_6.1) 0.17 0.10 0.14 0.23 0.51 0.13 0.31 0.37 0.33 0.16
Kaempferide 7-O-glucoside 1 (461.11_7.3) 0.02 0.03 0.03 0.04 0.03 0.01 0.05 0.03 0.03 0.07
Kaempferide 7-O-glucoside 2 (461.11_7.5) 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01

Isoquercitrin (463.09_6.7) 6.67 7.65 2.67 7.14 8.62 5.43 3.15 6.87 7.29 6.30
Nepetin 7-glucoside (477.1_7.1) 0.75 0.63 0.42 0.74 1.28 0.35 0.17 0.86 0.95 0.62

Quercetin-O- ð› ½-D-glucose-acetate
isomer 1 (505.1_6.8) 1.74 1.27 0.47 1.46 2.97 1.51 0.67 0.69 1.57 0.02

Quercetin-O- ð› ½âˆ’ D-glucose-acetate
isomer 2 (505.1_7) 0.23 0.16 0.04 0.18 0.34 0.14 0.07 0.09 0.18 0.00

Quercetin-O- ð› ½-D-glucose-acetate
isomer 3 (505.1_7.1) 0.10 0.19 0.03 0.14 0.26 0.09 0.08 0.18 0.16 0.49

Kaempferol 3-O-(3 â€² â€™,4 â€²
â€™-di-O-acetyl- ð›

¼-L-rhamnopyranoside) (515.12_8)
0.02 0.08 0.23 0.03 0.16 0.03 0.18 0.11 0.20 0.13

Pinoresinol-glucoside (519.19_6.8) 0.30 0.05 0.10 0.09 0.03 0.13 0.03 0.82 0.25 0.17
Procyanidin B2_a (577.14_5.4) 0.04 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
Procyanidin B2_b (577.14_5.7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Procyanidin B2_c (577.14_6.2) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Glucosylvitexin (593.15_6) 0.01 0.01 0.07 0.02 0.02 0.25 0.04 0.21 0.04 0.05
Kaempferol-3-O-rutinoside (593.15_5.6) 0.53 1.88 1.18 1.52 1.76 0.02 3.27 0.03 1.04 0.82

Puerarin xyloside (593.15_5.9) 0.01 0.03 0.01 0.02 0.02 0.00 0.06 0.00 0.01 0.02
Rutin (609.15_6.5) 7.07 0.00 0.00 0.11 0.00 0.00 0.00 0.01 0.01 2.35

Isorhamnetin-O-neohespeidoside
(623.16_6.6) 0.63 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.09
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Table 2. Cont.

Colombia Fiji India Kenya Madagascar Mexico Philippines Reunion South
Africa UK

Quercetin-di-O-glucoside (625.14_5.4) 0.03 0.02 0.02 0.03 0.02 0.04 0.02 0.04 0.02 0.02
Quercetin-di-O-glucoside 2 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.02

Colombia Fiji India Kenya Madagascar Mexico Philippines Reunion South
Africa UK

Phenolic acids %
2,4-Dihydroxybenzoic acid (153.02_6) 0.01 0.01 0.00 0.01 0.02 0.01 0.00 0.01 0.00 0.00

Protocatechuic acid (153.02_5) 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03
Shikimic acid (173.05_2) 0.01 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.01
Quinic acid (191.06_1.9) 0.31 0.80 0.36 0.60 0.64 0.11 0.20 0.48 0.36 0.35

Ferulic_Isoferulic acid (193.05_1.9) 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
Chlorogenic acid 1 (353.09_5) 4.26 7.37 4.45 7.18 6.86 5.13 3.90 7.77 6.14 1.86

Cryptochlorogenic acid 1 (353.09_5.4) 1.31 1.75 0.86 1.15 0.94 0.84 0.87 2.19 1.29 2.26
Neochlorogenic acid 1 (353.09_5.3) 0.04 0.01 0.01 0.07 0.01 0.01 0.01 0.02 0.01 0.01

Colombia Fiji India Kenya Madagascar Mexico Philippines Reunion South
Africa UK

Others %
Hydroxytyrosol a (153.06_4.8) 0.03 0.05 0.02 0.04 0.02 0.02 0.02 0.08 0.03 0.07
p-Coumaric acid (163.04_5.3) 0.14 0.10 0.11 0.25 0.14 0.16 0.13 0.10 0.11 0.04
Phenprobamate (164.07_4.6) 0.06 0.60 0.12 0.13 0.08 0.13 0.32 0.69 0.37 0.54

Vitamin C (175.02_6.1) 0.04 0.06 0.05 0.12 0.04 0.05 0.04 0.04 0.04 0.00
Azelaic acid (187.1_6.9) 0.12 0.30 0.15 0.33 0.09 0.09 0.16 0.23 0.30 0.37
Citric acid (191.02_2.1) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

L-Tryptophan (203.08_5.2) 0.11 0.49 0.10 0.19 0.07 0.12 0.14 0.88 0.41 0.60
Pantothenic acid (218.1_4.7) 0.03 0.04 0.01 0.02 0.05 0.05 0.11 0.06 0.02 1.64

Traumatic acid iso a (227.13_8.7) 0.10 0.54 0.12 0.27 0.08 0.06 0.29 0.71 0.37 0.15
cis- Traumatic acid iso b (227.13_8.5) 0.21 0.20 0.16 0.35 0.07 0.10 0.08 0.31 0.17 0.15

Traumatic acid iso c (227.13_8.3) 0.03 0.05 0.03 0.05 0.02 0.02 0.03 0.11 0.06 0.07
Myristic acid (227.2_12.8) 0.06 0.04 0.07 0.07 0.05 0.05 0.07 0.07 0.07 0.14

Uridine (243.06_2.1) 0.08 0.12 0.09 0.16 0.06 0.20 0.10 0.13 0.10 0.16
Alpha-Linolenic acid (277.22_12.9) 14.41 23.88 18.17 31.91 19.00 20.05 21.91 23.57 22.63 19.19

Linoleic acid (279.23_13.3) 5.32 9.65 7.31 11.55 8.06 9.49 9.45 8.89 8.40 9.14
Stearic acid (283.26_14.4) 0.53 1.25 0.47 1.31 0.89 0.71 1.34 1.08 0.96 1.54
Arachidic acid (311.3_15) 0.16 0.42 0.16 0.42 0.27 0.19 0.41 0.37 0.35 0.61

Vitamin B2 (375.13_5.6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
Oleanolic acid/Betulinic acid (455.35_12.9) 0.05 0.01 0.02 0.15 0.12 0.04 0.01 0.04 0.08 0.06

Table 3. Relative percentages of the glucosinolates/isothiocyanates, flavonoids, and phenolic acids
in MOLE.

Mole Glucosinolates (%) Flavonoids (%) Phenolic Acids (%) Others (%)

Colombia 50.81 ± 0.32 21.78 ± 0.21 5.94 ± 0.22 21.47 ± 0.11
Fiji 36.38 ± 0.57 15.84 ± 0.12 9.99 ± 0.17 37.80 ± 0.12

India 49.89 ± 0.01 17.24 ± 0.03 5.71 ± 0.04 27.16 ± 0.31

Kenya 24.61 ± 0.03 19.01 ± 0.01 9.05 ± 0.02 47.33 ± 0.03
Madagascar 32.31 ± 0.04 30.09 ± 0.01 8.53 ± 0.03 29.08 ± 0.09

Mexico 48.19 ± 0.03 14.18 ± 0.12 6.13 ± 0.02 31.52 ± 0.05
Philippines 42.42 ± 0.03 17.97 ± 0.01 5.01 ± 0.01 34.60 ± 0.06

Réunion 34.99 ± 0.06 17.13 ± 0.01 10.51 ± 0.01 37.37 ± 0.05
South Africa 35.16 ± 0.06 22.57 ± 0.01 7.84 ± 0.01 34.48 ± 0.05

UK 42.11 ± 0.07 18.82 ± 0.01 4.53 ± 0.01 34.55 ± 0.07

2.3. Cell Viability

Myotube viability was assessed using the methylthiazolyldiphenyl-tetrazolium bro-
mide (MTT) assay [40].

Briefly, C2C12 myotubes were treated with different leaf extract stock solution dilu-
tions (1/100 working solution) or vehicle (ethanol) in culture media for 24 h. During the
last hour of treatment, a sample treated with 1 mm H2O2 was also tested (Figure 8 upper
panel). No statistically significant differences were observed in myotubes supplemented
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with MOLE. However, a 28% reduction in cell viability was observed in myotubes treated
with H2O2 (p < 0.01, Figure 8, upper panel).
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USA). The analysis of the total antioxidant capacity of the various MOLE samples showed 
no statistically significant differences among them (p > 0.05). MOLE-India and MOLE-UK 
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Figure 8. MTT assay. (Upper Panel) C2C12 myotubes were treated with various dilutions of MOLE
stock solution (1/100 working solution) or vehicle (ethanol) in culture media for 24 h. During the
final hour of treatment, a sample treated solely with 1 mm H2O2 was tested. (Lower Panel) C2C12
myotubes were treated with MOLE or vehicle (ethanol) in culture media for 24 h. Hydrogen peroxide
(1 mM) was then added to the MOLE-pre-treated samples for an additional hour. Cell viability was
assessed using the MTT assay. Data are presented as the mean ± S.D. of three experiments, each
performed in triplicate. * p < 0.01 vs. CTRL; # p < 0.05 vs. H2O2.

To assess the protective effect of MOLE, C2C12 myotubes were treated with dilutions of
various MOLE stock solution (1/100 working solution) or vehicle (ethanol) in culture media
for 24 h. After incubation, hydrogen peroxide (1 mM) was added to the MOLE pre-treated
samples for an additional hour, followed by an MTT assay (Figure 8, lower panel).

We found that myotubes pre-treated with MOLE and subsequently exposed to hydro-
gen peroxide exhibited significantly greater cell viability, with increases ranging from 12%
(Kenya, p < 0.05) to 16% (South Africa, p < 0.05) compared to H2O2-treated controls for all
samples tested (Figure 8, lower panel).

Cell survival was also measured using a 3-(4,5-dimethylthiazol-1)-5-(3-carboxymeth-
oxyphenyl)-2H-tetrazolium (MTS) assay (Promega, Madison, WI, USA) [41]. The results
coincide with the MTT test in showing greater proportions of cell viability in MOLE-treated
samples (Supplementary Material Figure S1).

2.4. Evaluation of MOLE Trolox Equivalents Antioxidant Capacity

Total antioxidant capacity (TAC) was performed spectrophotometrically using the
Trolox equivalents antioxidant capacity assay (Sigma-Aldrich Chemical, St. Louis, MO,
USA). The analysis of the total antioxidant capacity of the various MOLE samples showed
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no statistically significant differences among them (p > 0.05). MOLE-India and MOLE-UK
(commercial) had the highest values (0.29 ± 0.02 and 0.30 ± 0.01 Trolox equivalents millimo-
lar/mg, respectively). MOLE-Fiji and MOLE-Réunion had the lowest values (0.22 ± 0.01
and 0.23 ± 0.01 Trolox eq. millimolar/mg, respectively, Figure 9).
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3. Discussion

Moringa oleifera Lam. offers a wealth of properties with significant implications for
both therapeutic and nutritional applications. Different parts of the plant, such as the
leaves, seeds, and roots, are used to treat various pathological conditions. Moreover, it
supports cardiovascular health, regulates blood glucose levels, and exhibits antioxidant,
anti-inflammatory, and potential anti-cancer properties [1–4,7,8,13–19]. Moringa leaves are
highly nutritious, and in low-income countries they are very valuable in combating food
and nutrition insecurity. In fact, given its multiple therapeutic activities, Moringa oleifera is
known as a “miracle tree”. Incorporating Moringa oleifera into one’s everyday diet is an
easy way to benefit from its therapeutic and nutritional properties. It can be eaten fresh,
i.e., in salads, or dried (moringa powder) and added, i.e., to yogurt or juices or herbal tea.
Otherwise, it can be used in seeds or oil. Another convenient option is taking moringa
capsules or supplements. Skeletal muscle is a tissue that is often exposed to pro-oxidizing
conditions due to its high oxygen consumption rates. In our previous study, we reported
that MOLE pretreatment had a beneficial effect on the antioxidant system of skeletal muscle
cells under the stressful conditions of an oxidizing environment [33–35].

In the present work, we have found that Moringa oleifera leaves obtained from dif-
ferent specimens originating from different regions of the world but grown in the same
environmental conditions proved for all practical purposes equally effective in counter-
acting the harmful effects of the oxidative insult induced by hydrogen peroxide in C2C12
myotubes and this is despite the difference in the percentage of bioactive molecules present
in the extracts.

These results are highly encouraging because they suggest that, at least for the present
application, Moringa oleifera germplasm can be used essentially regardless of geographical
provenance. In our study, we brought together accessions of Moringa oleifera from 4 con-
tinents and 9 countries and grew them together in a common garden, the International
Moringa Germplasm Collection (Jalisco, Mexico) until reaching mature size. After that, the
leaves were obtained and dried, and ethanolic extraction was performed.
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We did detect some variation in phytochemical profiles across the MOLE samples.
The highly sensitive ZenoTOF 7600 mass spectrometer enabled the in-depth qualitative
profiling of the MOLE extracts. The integration of both Zeno-DDA and Zeno-SWATH
approaches significantly enhanced the accuracy of bioactive molecule detection in MOLE
extracts. The metabolomics analysis identified the presence of glucosinolates, flavonoids,
phenolic acids, and other metabolites (such as aminoacids, vitamins, and fatty acids) in all
samples, albeit in varying proportions. All samples exhibited the highest percentage of
glucosinolates, except for the samples from Kenya, which had the highest percentage in
the “other compounds” group. Among the glucosinolates, the sample from Colombia had
the highest content, with a percentage of 50.8 of the total area, followed by India (49.9%)
and Mexico (48.2%). With regard to flavonoids, the Madagascar extract had the highest
percentage, at 30%, followed by the samples from South Africa and Colombia. With regard
to phenolic acids, Fiji and Réunion were the richest while for the “other compounds” group,
the richest were Kenja and Fiji.

Interestingly, in vitro analysis of the total antioxidant capacity of the various extracts
revealed similar activity across all tested samples despite some variation in phytochemical
profiles. This similarity of the different extracts was further supported by their effectiveness
in mitigating oxidative damage induced by H2O2 in a cell culture model. All extracts
demonstrated comparable efficacy in restoring C2C12 myotubes following oxidative stress
when pretreated with MOLE. This uniform response is likely attributable to the collective
antioxidant properties of the bioactive molecules present in Brassicalean extracts, and
Moringa oleifera in particular, as documented in previous studies [42–48]. Thus, our results
showed that even though there was some statistically significant variation in the phyto-
chemical profiles, this variation was in a relatively narrow absolute range, and was not
sufficient to provoke differences in antioxidant potential.

Isothiocyanates, polyphenols, flavonoids, and phenolic acids are known to act as
antioxidants, either inactivating lipid free radicals or preventing hyperperoxide decom-
position [49–51]. Glucosinolates (GSLs) are sulfur-containing glucosidic compounds typ-
ical of the order Capparales (e.g., Brassicaceae, Capparaceae, Caricaceae, etc.) that are
known for their health-promoting and antioxidative properties mediated by their metabo-
lites [52–56]. Upon chewing or mechanical processing, glucosinolates are hydrolyzed into
isothiocyanates due to myrosinase enzyme activity. Over 100 isothiocyanates have been
identified, including benzyl isothiocyanate, phenyl isothiocyanate, and sulforaphane [57],
which are potent activators of antioxidant defense pathways, supporting mitochondrial
function and maintaining protein integrity under oxidative stress. These antioxidant prop-
erties are primarily mediated through the Nrf2-dependent antioxidant cellular response.
Isothiocyanates also exhibit Nrf2-independent effects, such as inhibition of mitochondrial
fission and modulation of the mTOR pathway [58]. In individuals undergoing oxidative
stress induced by physical exercise, sulforaphane, the most extensively studied isothio-
cyanate, has demonstrated efficacy in reducing muscle damage and inflammation [59] and
alleviating muscle soreness by upregulating Nrf2-target NQO1 expression [60].

A glucosinolate-rich extract effectively enhanced the antioxidant defense system by
upregulating Nrf2-mediated gene induction, including GCLC, NQO1, and HO-1 mRNA
levels, as well as increasing HO-1 protein levels. Additionally, it activated the p38 MAPK
signaling pathway [61], known for its role in regulating Nrf2 phosphorylation and nuclear
translocation [62,63].

Moringa oleifera leaf extracts are rich sources of polyphenols, a diverse group of nat-
urally occurring compounds usually abundant in plants, characterized by multiple phe-
nol groups and encompassing various chemical structures and biological functions [64].
Polyphenols, including subclasses like flavonoids, flavanols, and phenolic acids [65,66], are
well-known for their antioxidant properties, which involve scavenging and neutralizing
free radicals, mitigating oxidative stress and cellular damage induced by reactive oxygen
species (ROS) [67]. Flavonols such as quercetin and kaempferol are renowned for their
potent antioxidant activity, inhibiting lipid peroxidation, and enhancing endogenous an-
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tioxidant defenses through the activation of enzymes like SOD and CAT [68]. Quercetin has
been shown to promote mitochondrial biogenesis in skeletal muscles, thereby improving
mitochondrial function, protein content, enzyme activity, and respiratory function [69–73].
Furthermore, quercetin protects myotubes against TNF-induced muscle atrophy under
obese conditions by inducing Nrf2-mediated HO-1 induction while inhibiting NF-kB activa-
tion [74]. Catechin flavonoids, including epicatechin and epigallocatechin, are recognized
for their antioxidant properties [75], which involve scavenging free radicals, modulating
cellular signaling pathways, and enhancing the activity of endogenous antioxidants [76–79].

Phenolic acids, such as hydroxybenzoic acids (e.g., gallic acid) and hydroxycinnamic
acids (e.g., caffeic acid), are also present in leaf extracts. These compounds represent
another important group of polyphenols [80] with antioxidative properties that contribute
to cellular defense against oxidative stress. Gallic acid scavenges free radicals, inhibits
lipid peroxidation, and preserves cellular integrity by modulating antioxidant enzyme
activity [81]. Similarly, caffeic acid scavenges free radicals, chelates metal ions involved in
oxidative processes, and regulates gene expression related to antioxidant defenses [82].

Polyphenols act as antioxidants in various ways. For example, they modulate the
activity of endogenous antioxidant enzymes such as SOD, CAT, and GPx, which are crucial
in neutralizing free radicals and ROS, thereby reinforcing the cellular antioxidant defense
system [83,84]. Additionally, polyphenols directly scavenge free radicals, reducing their
reactivity and potential to cause cellular damage, and mitigate oxidative damage resulting
from inflammatory processes [83]. Polyphenols are also effective in regenerating other
antioxidants, such as vitamins C and E, enhancing their antioxidative efficacy within the
cellular environment [85]. Moreover, they activate specific cellular defense mechanisms
and promote the repair of damaged molecules, thereby enhancing cellular resilience against
oxidative damage [86].

The disruption of cellular antioxidant system homeostasis is a key feature of oxidative
stress. To address the growing demand for nutritional interventions to counteract oxidative
stress, research has increasingly focused on nutritional strategies aimed at enhancing
physical capabilities, such as reducing fatigue and increasing exercise endurance [87–90].

Skeletal muscle tissue is particularly susceptible to oxidative stress. Muscle contrac-
tions during physical exercise, especially intense or unaccustomed activities, are typically
accompanied by high ROS production, leading to oxidative stress and potential myofi-
bral damage. This damage is evidenced by increased biomarkers of oxidation in both
skeletal muscle and the blood [31,32]. Furthermore, oxidative stress is a key factor in the
development of fatigue, a common experience among athletes that leads to a decline in
exercise performance. To preserve muscle function and protect myotubes from excessive
ROS exposure, the use of antioxidants is a common strategy. Appropriate antioxidant use
has been shown to be beneficial in balancing the ratio between oxidants and antioxidants
in most physiopathological conditions [87,91,92].

In this context, the use of Moringa oleifera extracts on muscle cell models has yielded
encouraging results in counteracting oxidative stress. Our group has previously demon-
strated that MOLE exhibits a dose-dependent total antioxidant capacity in a cell-free system,
indicating that its efficacy depends on the concentration of antioxidant molecules present
in the mixture [33,35]. Interestingly, treatment with MOLE activated oxidative metabolism
through the SIRT1-PPAR pathway and the Nrf2 pathway, along with its target gene
HO-1, both of which are regulators of cellular resistance to oxidants. MOLE also im-
proved glutathione redox homeostasis and increased antioxidant enzymatic activities in
C2C12 myotubes [33,34]. Moreover, a pre-supplementation strategy with MOLE showed a
significant protective effect on C2C12 myotubes against oxidative insult induced by acute
H2O2 treatment [35].

Metabolomics analysis of our samples highlighted a similar profile of the identi-
fied metabolites. However, differences between the different extracts were found when
considering the relative percentages of the different groups of molecules (glucosino-
lates/isothiocyanates, flavonoids, and phenolic acids) in the MOLE samples.
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Furthermore, it must be considered that in MOLE, there are many bioactive molecules
with antioxidant action per se; however, it must be taken into consideration that the
biological effect of the extracts derives not from only a single component but is probably
due to a synergistic effect of the mixture of all of the bioactive molecules present [33–35].
Among them, the most representative molecules in our samples are the glucosinolates
glucomoringin and 4-O-acetylrhamnopyranosyloxybenzyl-GS; the flavonoids isoquercitrin,
astragalin, and rutin; the phenolic acid chlorogenic acid; and among the lipids, omega-
3 alpha-linolenic acid. From the literature, it has been shown that these molecules can
contribute per se [93–95] or with a synergistic effect [33–35] to the antioxidant protective
action. Here, we evaluated the synergic effects of the Moringa oleifera leaf extracts.

The results obtained in this work demonstrate that different Moringa oleifera speci-
mens, despite being cultivated under the same environmental conditions, produce extracts
with varying qualitative characteristics but similar biological effects. This is particularly
important as these qualitative differences are entirely due to heritable variation among
individuals from different geographical locations, rather than cultivation conditions. Con-
sequently, this finding enhances the validity of using extracts from this plant for nutritional
purposes wherever it is grown.

Future studies are warranted on the evaluation of the effects of environmental variation
on the growth of plants coming from the same region and how these variations may possibly
influence the quality of the biomolecules present in the different parts of the plant and in
particular in the leaves.

4. Materials and Methods

All chemical reagents, unless otherwise specified, were purchased from Sigma-Aldrich
Chemical (Sigma-Aldrich Chemical, St. Louis, MO, USA). A schematic representation of
the workflow is shown in Figure 10.
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4.1. Cultivation of Moringa oleifera Trees and Leaf Sampling

The plants were grown in a common garden located at the International Moringa
Germplasm Collection near the Chamela Biological Station of the Universidad Nacional
Autónoma de México, situated on the Mexican Pacific coast in Jalisco State. This region ex-
periences a tropical monsoonal climate characterized by a rainy season from July to October,
interspersed with a prolonged dry season. The average annual rainfall is 752 ± 256 mm,
predominantly occurring during a few significant events. The mean annual temperature
is 24.9 ◦C, ranging from 14.8 to 32 ◦C [96,97]. The garden features a consistent base soil
composed of decomposed granodiorites originating from the Vallarta Batholith [98].

Our samples describe much of the variation that is well-documented within M. oleifera,
e.g., spanning variants with short fruits with few, large seeds to those with long fruits and
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many small seeds; leaves with greater or lesser degrees of red pigment on the rachis; or
variation in flower color, from white to cream [99–101]. The individuals we studied here
have been previously examined for variables such as protein content and glucosinolate
profiles, and they do show some variation [10], though accessions of M. oleifera are much
more similar to one another than they are to other Moringa species [9,102].

The uppermost fully expanded leaves were collected from randomly selected branches
of healthy plants and promptly dried using ample silica gel desiccant. Once completely
dehydrated, the leaves were divided into sample portions of a few grams and then stored
for subsequent extraction.

4.2. MOLE: Ethanolic Extract of Moringa oleifera Leaves

The dried leaves from different samples (Table 1) were finely chopped and then 1 g of
leaf powder was used. For comparison, commercial Moringa oleifera leaf powder (PureBodhi
Nutraceuticals Ltd., London, UK) was also tested. Briefly, 1 g of leaf powder was dissolved
in 10 mL of ethanol (100%) and then sonicated (Vibra-Cell CV 18 SONICS VX 11, Sonics
& Materials, Newtown, CT, USA) twice for 10 min at +4 ◦C. The resulting extract was
centrifuged (2000× g for 10 min at +4 ◦C), collected, and stored at −20 ◦C (stock solution
corresponding to 15 mg/mL of dried leaves).

4.3. LC-MSMS SCIEX ZenoTOF 7600 System MOLE Qualitative Profiling

Qualitative profiling of the MOLE extracts was conducted using ultra-high performance liq-
uid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC/QTOF- MS) on a
SCIEX X500B system equipped with a ZenoTOF 7600 mass spectrometer (AB SCIEX GmbH,
Landwehrstraße 54, Darmstadt, Germany). The instrument utilized a high-resolution QTOF
electrospray ion source operated in negative ion mode, following established protocols [33].
The sample’s digital fingerprint was characterized using SWATH analysis.

The data obtained were processed using SciexOS Software 3.3 (AB SCIEX GmbH,
Landwehrstraße 54, Darmstadt, Germany), and the SCIEX Natural Products 2.1 Library (AB
SCIEX GmbH, Landwehrstraße 54, Darmstadt, Germany) was used to search compound
spectra databases.

4.4. Cell Cultures

C2C12 myoblasts (ATCC, Manassas, VA, USA) were cultured following established
protocols. Preconfluent cells (85% confluency) were induced to differentiate by lowering
the FBS to 2% in a culture medium. Cell differentiation was monitored using microscopy
and assessed using myogenin and MHC expression with Western blot analysis [103].

C2C12 myotubes were treated with MOLE working solutions (1/100 dilution of stock
solutions) or vehicle-only (ethanol) in culture medium for 24 h to assess cytotoxicity. The
ethanol concentration in the working solutions (0.1%, v/v) did not affect the myotubes.
During the final hour of treatment, a sample exposed solely to 1 mm H2O2 was tested.
Cell viability was assessed with the methyl-thiazolyl-diphenyl-tetrazolium bromide (MTT)
assay [104].

To verify the protective effect of different Moringa oleifera leaf extracts, myotubes
were treated with MOLE solutions or vehicle-only (methanol) in culture medium for 24 h.
Subsequently, hydrogen peroxide (1 mM) was added to samples pre-treated with vehicle
or MOLE for a further hour. MTT assays were then performed, and the samples were
prepared for biochemical analysis. The cells were trypsinized, collected, and centrifuged at
1200× g for 10 min at room temperature. For comparison, cell survival was also measured
using a 3-(4,5-dimethylthiazol-1)-5-(3-carboxymeth-oxyphenyl)-2H-tetrazolium (MTS) as-
say (Promega, Madison, WI, USA) [41] (Supplementary Material S1). After gentle lysis, the
lysate was used for biochemical analysis or tested for protein content using the Bradford
method (Sigma-Aldrich, St. Louis, MO, USA).
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4.5. TAC: Trolox Equivalents Antioxidant Capacity

The total antioxidant capacity (TAC) was performed spectrophotometrically using
the Trolox equivalents antioxidant capacity assay [105]. This assay evaluates the ability
of cell lysates to prevent ABTS+ radical formation in ABTS-metMyoPBS buffer after the
addition of H2O2 (450 µM) compared to the vitamin E analog Trolox standards. The
variation in absorbance detected at 734 nm was compared to those obtained using Trolox
standards (0.125–2.0 mM) and expressed as micromoles per milligram of protein (µmol/mg
protein) tested.

To verify the efficiency of the extraction method, 10 µL of different MOLE stock
solution dilutions (0.015, 0.075, 0.15, and 1.5 mg/mL of dried powder) was tested and the
antioxidant capacity observed was comparable with that already reported [33,34].

4.6. Statistical Analysis

The distribution of the data was evaluated using the Kolmogorov–Smirnov test. All
of the data are expressed as the means ± S.D. of three independent experiments, each
performed in triplicate. One-way ANOVA for repeated measures and Bonferroni post-hoc
analyses were performed to test for significant differences among groups for each variable
tested. Statistical significance was set at p < 0.05. Statistical analyses were performed
using SPSS for Windows (Version 17.0; SPSS Inc., Chicago, IL, USA). Comparisons between
untreated controls and control vehicles showed no statistical differences for all variables
tested [33,34].

5. Conclusions

In conclusion, we provide very encouraging results that Moringa oleifera leaf extract is
effective in reducing the damaging effect of oxidative insult in C2C12 myotubes irrespective
of geographical provenance. These findings are of particular importance because they
suggest that the use of Moringa for its therapeutic benefits can proceed without the need for
the lengthy and complex global exchange of materials between regions. To date, because
studies tend to examine only locally available germplasm, it has remained unclear as to
whether the material from one area differs significantly from that available in another. In
the context of the prevention of oxidative stress, avoiding skeletal muscle cellular damage
via dietary antioxidants promises to be a low-cost, convenient, and highly effective strategy.
Our results suggest that given the multitude of bioactive molecules present, although in
different percentages, whatever Moringa oleifera material is available locally can be used
both as nutritional support and as a useful agent to counteract oxidative stress and/or to
assist traditional medicine in the treatment of various pathologies.
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