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Simple Summary: Cancer continues to be a major medical challenge, highlighting the need for new
treatment strategies. One promising area of research is the role of exercise-derived extracellular
vesicles, which are tiny particles released from cells during physical activity. These extracellular
vesicles play a key role in cell communication and can influence various cellular functions. Recent
studies have shown that extracellular vesicles released during exercise contain bioactive molecules
that may help combat cancer. These molecules have been found to inhibit tumor growth, prevent
the spread of cancer, and improve responses to treatment. They work by modulating important
signaling pathways and altering the tumor environment, which could enhance the effectiveness of
cancer therapies and minimize side effects. This review aims to summarize the current understanding
of how exercise-derived extracellular vesicles and their contents impact cancer biology. It will cover
how these extracellular vesicles affect cancer cell behaviors like growth, proliferation, and invasion,
and discuss the potential benefits and limitations of using exercise-derived extracellular vesicles as
new cancer treatments.

Abstract: Cancer remains a major challenge in medicine, prompting exploration of innovative
therapies. Recent studies suggest that exercise-derived extracellular vesicles (EVs) may offer potential
anti-cancer benefits. These small, membrane-bound particles, including exosomes, carry bioactive
molecules such as proteins and RNA that mediate intercellular communication. Exercise has been
shown to increase EV secretion, influencing physiological processes like tissue repair, inflammation,
and metabolism. Notably, preclinical studies have demonstrated that exercise-derived EVs can inhibit
tumor growth, reduce metastasis, and enhance treatment response. For instance, in a study using
animal models, exercise-derived EVs were shown to suppress tumor proliferation in breast and
colon cancers. Another study reported that these EVs reduced metastatic potential by decreasing
the migration and invasion of cancer cells. Additionally, exercise-induced EVs have been found
to enhance the effectiveness of chemotherapy by sensitizing tumor cells to treatment. This review
highlights the emerging role of exercise-derived circulating biomolecules, particularly EVs, in cancer
biology. It discusses the mechanisms through which EVs impact cancer progression, the challenges in
translating preclinical findings to clinical practice, and future research directions. Although research
in this area is still limited, current findings suggest that EVs could play a crucial role in spreading
molecules that promote better health in cancer patients. Understanding these EV profiles could lead
to future therapies, such as exercise mimetics or targeted drugs, to treat cancer.
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1. Introduction

Cancer continues to be one of the greatest challenges in modern medicine, requiring
innovative therapeutic approaches that can enhance current treatments. Recently, there
has been increasing interest in the potential of exercise-derived extracellular vesicles (EVs)
as promising agents for cancer therapy. Extracellular vesicles, including exosomes and
microvesicles, are small membrane-bound particles secreted by various cell types, capable
of carrying bioactive molecules such as proteins, lipids, and nucleic acids. Emerging
evidence suggests that these EVs play crucial roles in intercellular communication and can
modulate cellular functions in both physiological and pathological conditions [1,2].

Exercise has long been recognized for its numerous health benefits, including its
potential to influence cancer biology [3,4]. Recent research has unveiled exercise as a potent
modulator of EV secretion, with exercise-induced EVs implicated in various physiological
processes such as tissue repair, inflammation modulation, and metabolic regulation [5].
Moreover, exercise-derived EVs have shown promising anti-cancer properties, including
the inhibition of tumor growth, suppression of metastasis, and enhancement of treatment
response [6,7].

This review aims to provide a comprehensive overview of the current understanding
of the biological effects of exercise-derived circulating biomolecules, with a particular focus
on the role of EV cargo, in cancer biology. We will explore the current knowledge on the
biological mechanisms induced by both exercise-conditioned serum and exercise-induced
EVs, as well as their impact on cancer cell features, such as growth/proliferation, cell death,
migration, and invasion. Additionally, we will discuss the potential physiological relevance,
the current limitations, and the future direction of the research on exercise-derived EVs
as novel therapeutic agents in cancer management. By elucidating the intricate interplay
between physical exercise, extracellular vesicles, and cancer, this review seeks to shed light
on possible new therapeutic targets for cancer therapy and improve patient outcomes.

2. Extracellular Vesicles and Physical Activity

In recent years, the study of extracellular vesicles (EVs) has garnered significant atten-
tion due to their pivotal role in intercellular communication and their potential implications
in various physiological and pathological processes. Among the diverse array of factors
influencing EV secretion and function, physical activity (PA) has emerged as a particularly
intriguing modulator [8–11].

Extracellular vesicles in the blood consist of a diverse group of membranous struc-
tures released by platelets, red blood cells (which together make up over 50%), other
circulating cells, and the tissues surrounding cells into the extracellular environment [12].
Classified broadly into exosomes, microvesicles, and apoptotic bodies based on their bio-
genesis and size, EVs serve as vehicles for intercellular communication by transporting
various biomolecules, including proteins, nucleic acids, lipids, and metabolites. This ability
to shuttle bioactive cargo between cells underscores their significance in orchestrating
diverse physiological processes, ranging from immune regulation to tissue repair and
homeostasis [13].

Physical activity, encompassing exercise and movement, exerts multifaceted effects
on cellular and systemic physiology. Emerging evidence suggests that PA modulates the
secretion, concentration, as well as composition and function of EVs, thereby influencing
intercellular communication and systemic responses [14]. Both acute bouts and chronic
PA have been implicated in altering EV release patterns and cargo content across dif-
ferent cell types [5,8,15–19]. Table 1 summarizes the effects of physical exercise on EV
dynamics/features.

To date, the exact molecular mechanisms responsible for the induction of EV release
during exercise are still not well understood. Over the course of the last few years, sev-
eral putative contributors have been suggested, including lymphocyte mobilization [20],
biomechanical forces like shear, tension, and compression [21], increased intracellular cal-
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cium levels [22,23], and conditions such as an acidic environment [24] and reactive oxygen
species (ROS) production in muscle cells [25].

Table 1. Key points related to the impact of physical activity on extracellular vesicle source, release,
concentration, and size/composition.

Exercise Derived-EVs Details

Sources of EVs EVs are released by platelets, red blood cells (over 50%), and other circulating cells and tissues, including
skeletal muscle (1–5%), during exercise.

Release of EVs

The possible contributors are as follows:

- Lymphocyte mobilization.
- Biomechanical forces.
- Increased intracellular calcium levels.
- Acidic environment.
- Reactive oxygen species production.

Concentration of EVs - High-intensity exercise increases circulating EVs.
- Moderate-intensity exercise shows mixed results (increased, unchanged, or decreased EV levels).

Size/composition of EVs - Aerobic exercise shows no change in EV size.
- Resistance exercise shows mixed results (unchanged or decreased EV size).

Studies show that high-intensity exercise generally leads to a temporary increase
in circulating EVs [15,26,27], while moderate-intensity exercise has mixed effects, with
EV levels either rising [16,28,29], remaining unchanged [8,19,30,31], or decreasing [9,32].
Exercise intensity seems to influence EV release, with factors like exercise type, timing of
sample collection, and sex also affecting EV levels and characteristics. Similarly, the analysis
of EV size shows for most of the published research no change in size following aerobic
exercise [33,34], while others find a decrease in EV mean size in response to resistance
exercise in sedentary youth with obesity [35] and in active healthy men [36], but not in
women [36]. However, differences in EV studies may also stem from variations in methods
used for EV isolation and quantification. Techniques like ultracentrifugation, size-exclusion
chromatography, and precipitation-based methods can vary in efficiency and may co-isolate
non-EV components, affecting results [27,37]. More accurate EV counts can be achieved
through methods that quantify EVs directly in biofluids, such as nano-FCM or Exoview,
which minimize biases [16,38].

It is known that various tissues respond to PA and release their EVs into the blood-
stream following exercise. While skeletal muscle is a major tissue involved in exercise
and produces EVs rich in muscle-specific proteins, most of these EVs remain within the
muscle tissue [39]. Only a small fraction (1–5%) of muscle-derived EVs enter the blood-
stream [39–41]. Other cell types, including lymphocytes, monocytes, platelets, endothelial
cells, and antigen-presenting cells, are suggested to be the main contributors to increased cir-
culating EVs during and after exercise [27]. However, more research is needed to determine
how these findings apply to different exercise types, intensities, and durations.

Analysis of the protein cargo of exercise-derived EVs revealed a variety of proteins
linked to key signaling pathways, such as angiogenesis, immune signaling, and glycoly-
sis [31,42]. Additionally, several studies provided evidence of altered ncRNA cargo in EVs
following exercise [31,39,43–45]. Functional analysis of exercise-related EVs indicated their
role in cardiovascular prevention [9], protection in ischemia/reperfusion injury [16,19],
hypoxia/reoxygenation assays [19], tissue remodeling [46], endothelial function [47], as
well as muscle remodeling and growth [26], potentially driven by EV cargo responding to
exercise stimuli.

To date, all these findings suggest that EVs are actively released into circulation during
PA and may act as mediators of various key signaling pathways involved in exercise-
induced adaptation processes.
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3. Biological Impact of Physical Activity on Cancer

Cancer is a complex and multifaceted disease characterized by uncontrolled cell
growth and proliferation. Despite advances in treatment modalities, cancer remains a
significant global health burden. In recent years, the role of lifestyle factors, including PA,
in cancer prevention and management has garnered considerable attention, and guidelines
for cancer survivors have been presented [48,49]. Mounting evidence suggests that regular
PA is associated with a reduced risk of developing certain types of cancer. Epidemiological
studies have consistently demonstrated an inverse relationship between PA levels and
the incidence of several common cancers, including breast, colon, prostate, and lung
cancer [50,51]. Moreover, emerging evidence suggests that exercise may also improve
cancer outcomes and overall survival among cancer survivors [48,52,53].

The molecular mechanisms underlying the beneficial effects of exercise in cancer
prevention and management are multifaceted and involve both systemic and cellular path-
ways [53–56]. With this understanding, exercise training for cancer patients could shift
from a ‘one-size-fits-all’ approach to more personalized strategies, grounded in detailed
physiological insights into how varying amounts, intensities, and types of exercise can in-
fluence cancer outcomes. To date, it is known that regular PA is associated with modulation
of various physiological processes, including inflammation, immune function, hormone
metabolism, and oxidative stress, all of which play critical roles in cancer development and
progression [57–59]. Additionally, PA may directly influence intrinsic tumor factors such
as growth rate, angiogenesis, apoptosis, metabolism, and metastasis [60,61]. It also helps
alleviate adverse effects associated with cancer and its treatments, while enhancing the
effectiveness of cancer therapies.

Among the many studies examining the impact of PA on cancer outcomes, the most
frequently investigated effect is the reduction in tumor growth rate [61–63]. Notably,
research has shown that exercise training can lead to up to a 67% reduction in the growth
rate of established tumors [62].

To better understand at the biological level the growth-inhibitory effect of PA, several
studies have utilized exercise-conditioned serum to incubate cancer cells from the breast,
prostate, and lung [64–73]. Table 2 lists key findings from treatment of cancer cells with
exercise-conditioned serum.

Table 2. Key aspects that have emerged from the treatment of cancer cells with exercise-conditioned
serum.

Category Summary

Main Concept Exercise-conditioned serum inhibits crucial signaling pathways involved in cancer cell
proliferation.

Proliferation Mechanisms in Cancer Mutations in conserved signaling networks drive increased cancer cell proliferation.

Impact of Exercise-Conditioned Serum Alters key signaling pathways, reducing cancer cell proliferation.

Catecholamines Post-exercise serum is enriched in catecholamines (e.g., norepinephrine, epinephrine),
which support the Hippo tumor suppressor pathway.

Hippo Pathway Activation
Catecholamines activate MST1/2 and MAP4K, leading to phosphorylation and
activation of LATS1/2 kinases, which inhibit YAP/TAZ nuclear entry, reducing cell
proliferation.

IGFBP1 Exercise increases IGFBP1, regulating cell proliferation and modulating IGF1 signaling
pathways (JAK, RAS, AKT).

EGF Reduction Lower levels of EGF reduce activation of EGFR and its downstream signaling,
contributing to antiproliferative effects.

Cytokines Increased levels of cytokines (TNFα, IL-6, OSM, IL-8) activate AMPK, which inhibits
mTOR, AKT, and ERK1/2 pathways, reducing cell proliferation.

GSK3β Phosphorylation Decreased GSK3β phosphorylation in exercise-conditioned serum inhibits the
Wnt/β-catenin pathway, further contributing to antiproliferative effects.
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To date, it is still not clear whether acute exercise is better than chronic exercise in
terms of effectiveness on tumor cells, probably due to the differences in patient population,
type of exercise, and cancer cell types [64,68,71,72]. The current results suggest an impact
of exercise-conditioned serum on both the phosphorylation state of protein involved in
signaling pathways related to proliferation (i.e., STAT3, Akt, mTOR, p70s6k, and Erk 1/2),
and supporting the Hippo tumor suppressor pathway by inhibiting Yes-Associated Protein
(YAP)/PDZ-binding Motif (TAZ) in different cancer cells [67,69,73] (Figure 1), known to be
dysregulated in many cancers.

In 2013, Rundqvist and colleagues [66] were the first group to demonstrate that
exercise-conditioned serum from healthy subjects reduces prostate cancer cell viability
(LNCaP cells) by ~30% when compared with serum collected pre-exercise. Serum analysis
identified two possible candidates for the effect: increased insulin like growth factor
binding protein-1 (IGFBP-1) and reduced levels of epidermal growth factor (EGF) [66]. It is
known that low levels of IGFBP-1 [74–76], as well as high levels of EGF and its receptor,
are found in prostate cancer and are associated with poor prognosis [77,78]. Therefore,
their exercise-induced modulation suggests a direct role of PA on the reduced rate of
proliferation observed in these cancer cells (Figure 1).

Similar findings were observed with exercise-conditioned serum from comparable
populations, including young healthy men [67] and older prostate cancer patients [71,72], as
well as with human breast cancer cell lines (e.g., MDA-MB-231, MCF-7) treated with serum
from both young healthy women [67] and women with breast cancer [64,73]. Notably, mice
injected with cancer cells treated with post-exercise human serum developed fewer tumors
compared to those injected with cells treated with pre-exercise serum [73].

At a mechanistic level, not all of the signaling pathways modified by exercise-conditioned
serum involved in the process of inhibition of tumor proliferation are yet known; how-
ever, the results suggest a possible modulation of specific myokines (i.e., IL-6, IL-15, and
oncostatin M [OSM]) and the Hippo tumor suppressor pathway in both cell lines, with
a partial increase in YAP phosphorylation, and, only in breast cancer cells, the possible
involvement of the Wnt/ß-catenin pathway, credited with a significant decrease in GSK3ß
phosphorylation (Figure 1). Furthermore, inhibition of some of these molecules/pathways
has been shown to attenuate the effect of exercise on tumor latency [79,80].

Again in human colon cancer, Devin and colleagues [68] identified a transient increase
in the concentration of serum cytokines (i.e., TNFalpha, IL-6, and IL-8) immediately after
high-intensity interval exercise in colorectal cancer survivors, which may be an important
mechanism contributing to the observed growth suppression effect in colon cancer cells.
A few years later, Orange and colleagues found similar results with exercise-conditioned
serum from healthy, sedentary males [81]. Although there are differences in terms of
exercise protocol (acute aerobic vs. acute high-intensity interval exercise) and the char-
acteristics of recruited subjects (Healthy vs. Disease condition), immediately after the
single bout of exercise they found a significant increase in IL-6. To date, the mechanism
through which aforementioned factors could influence cell growth in vivo is not yet clear.
For some of these molecules, a potential mechanism has been proposed to explain the
anti-carcinogenic effects of exercise-conditioned serum, although these hypotheses have
not yet been explored in the context of exercise and cancer. For instance, it is possible that
interleukin-6 (IL-6) released from skeletal muscle during exercise activates AMP-activated
protein kinase (AMPK) in distant tissues, including aberrant or dysplastic cells, beyond
just adipocytes [82]. AMPK is known to inhibit mTOR and its downstream targets, such as
p70S6K, through either a tuberous sclerosis complex 2 (TSC2)-dependent or -independent
pathway [83,84] (Figure 1).

Additionally, Kurgan and colleagues found that acute exercise led to significant in-
creases in IL-6, IL-1β, IL-1α, and TNF-α. Post-exercise serum was shown to inhibit the
activation of Akt, its downstream effectors, including mTOR and p70S6K, as well as in-
hibit Erk1/2, contributing to reduced cell proliferation and survival in lung cancer cells
(A549) [69] (Figure 1).
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Figure 1. Exercise-conditioned serum inhibits signaling pathways that are crucial for cell proliferation.
In cancer cells, increased proliferation is often driven by mutations in highly conserved signaling net-
works that regulate cell growth and division. When cancer cells are exposed to exercise-conditioned
serum, several of these signaling pathways are altered, leading to a reduction in cell proliferation. For
example, post-exercise serum has been shown to be enriched in catecholamines (e.g., norepinephrine
and epinephrine), which can support the Hippo tumor suppressor pathway. When the Hippo path-
way is “ON”, MST1/2 and MAP4K are activated, which subsequently phosphorylate and activate
LATS1/2 kinases. Activated LATS1/2 phosphorylates transcriptional coactivator YAP/TAZ, prevent-
ing entry into the nucleus by promoting their degradation in the cytoplasm. Exercise has also been
shown to increase the concentration of IGFBP1, a protein known to regulate cell proliferation, survival,
differentiation, migration, and invasion. The binding of IGFBP1 with IGF1 modulates the activity of
IGF1 signaling axes, such as the JAK, RAS, and AKT pathways, by regulating their availability to the
IGF-IR. Similar effects were found with lower levels of EGF in exercise-conditioned serum, leading to
reduced activation of the EGFR and its downstream signaling pathway. An antiproliferative effect
appears to be derived from the increase in levels of some cytokines (i.e., TNFalpha, IL-6, OSM, and
IL-8) induced by physical exercise. It is hypothesized that these molecules, in particular IL-6, released
during exercise activate AMPK, which inhibits mTOR and its downstream effectors, such as p70s6k,
as well as inhibits AKT and ERK1/2 phosphorylation/activation. Finally, the significant decrease in
GSK3ß phosphorylation in exercise-conditioned serum highlights another possible antiproliferative
effect of physical activity through the inhibition of the Wnt/ß-catenin pathway. MST1/2, Mammalian
STE20-like 1/2; LATS1/2, Large Tumor Suppressor 1/2; YAP, Yes-associated protein; IGFBP1, insulin-
like growth factor binding protein 1; IGF1, insulin-like growth factor; IGF-IR, IGF1 receptor; JAK,
Janus tyrosine kinase; RAS; rat sarcoma virus; AKT, protein kinase B; EGF, epidermal growth factor;
EGFR, epidermal growth factor receptor; TNFalpha, tumor necrosis factor alpha; IL-6, interleukine-6;
OSM, oncostatin M; IL-8, interleukine-8.
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Overall, these findings underscore the significant biological impact of PA on cancer
prevention and management. Regular PA has demonstrated the potential to reduce can-
cer risk and improve outcomes across several cancer types, including breast, prostate,
lung, and colon cancers. These beneficial effects are mediated through complex molecular
mechanisms, involving systemic changes in inflammation, immune function, and hor-
mone metabolism, as well as direct modulation of tumor growth, angiogenesis, apoptosis,
and metastasis.

Moreover, studies utilizing exercise-conditioned serum have revealed that both acute
and chronic exercise can influence cancer cell signaling pathways, such as STAT3, Akt,
mTOR, and the Hippo tumor suppressor pathway, resulting in reduced cancer cell prolifer-
ation and tumor growth. The modulation of specific myokines and cytokines, including
IL-6 and TNF-α, further highlights the intricate role of exercise-induced systemic changes
in the inhibition of cancer progression.

Despite these advancements, several questions remain unanswered. The exact mecha-
nisms through which exercise exerts its anti-carcinogenic effects are not fully elucidated,
and the relative effectiveness of different exercise regimens on cancer outcomes warrants
further investigation. Additionally, personalized exercise interventions tailored to individ-
ual cancer types, stages, and patient profiles could enhance the therapeutic potential of PA.
Continued research in this area will be vital in refining exercise guidelines and optimizing
cancer care.

4. Exercise-Derived Extracellular Vesicles in Cancer

As mentioned in the previous chapter, numerous studies have suggested that some of
the biomolecules that enter the bloodstream after exercise may reduce the proliferation rate
and survival of tumor cells.

Most of the circulating exercise-derived EVs come from immune system cells, endothe-
lial cells, and platelets, and they remain in the bloodstream after exercise [85]. Research into
the phenotype of exercise-derived EVs has revealed that only a small percentage originate
from skeletal muscle, with the majority of the cargo in these EVs being derived from various
other tissue cell types, including hepatocytes, adipose cells, immune cells, and endothelial
cells [42,86].

Skeletal muscle, which constitutes around 40% of body mass, functions as an en-
docrine organ by secreting various biomolecules (such as proteins, non-coding RNAs,
lipids, and metabolites) released during muscle contraction and crucial for mediating some
of the systemic effects of exercise [87,88]. Many of these biomolecules, often referred to
as exerkines, are believed to circulate through the body enclosed in extracellular vesicles
(EVs) [89]. Exercise has been shown to increase the release of over 300 molecules from
skeletal muscle-derived EVs, including myokines, miRNAs, and glycolytic enzymes, which
may act as tumor suppressors and influence several characteristics of cancer cells [5,65,90].
The skeletal muscle secretome, including myokines and miRNAs, has demonstrated poten-
tial in suppressing tumor growth [48,65,91]. However, the current shortage of preclinical
studies directly examining the effects of skeletal muscle-derived EVs on cancer cells limits
our understanding of the precise role of exercise-induced skeletal muscle-derived EVs.

To date, research on exercise-derived EVs in cancer is still in its early stages, and
further studies are needed to fully understand their role. Currently, only one preclinical
study has shown a direct tumor-suppressive effect of exercise-derived EVs (7) (Figure 2).

The authors found that regular injections of exercise-induced extracellular vesicles
(EVs) in tumor-bearing rats led to a reduction in primary tumor growth by approximately
35% and potentially delayed the onset of lung metastases [7]. Analysis of the EV cargo
revealed an upregulation of genes encoding proteins involved in metabolic processes,
such as Notum (palmitoleoyl-protein carboxylesterase), Pctp (phosphatidylcholine transfer
protein), and Cyp4b1 (cytochrome P450, family 4, subfamily b, polypeptide 1). Addition-
ally, molecular chaperones such as DnaJ Heat Shock Protein Family (Hsp40) Member B5
(Dnajb5) and Heat Shock Protein Family A (Hsp70) Member 5 (Hspa5), which are crucial
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for protein maturation and cell survival under stress, were identified. The cargo also
included molecules linked to inflammation, such as Leukotriene B4 receptor 2 (Ltb4r2) and
Arachidonate 5-lipoxygenase (Alox5), T-cell development (Zinc Finger And BTB Domain
Containing 1, Zbtb1), cellular response to hormones (Oxytocin receptor, OXTR), and nucleic
acid metabolism (Decapping exoribonuclease, DXO). Despite the small sample size, this
study provides insights into the molecular composition of exercise-induced EVs and their
potential direct role in inhibiting tumor growth and metastasis in vivo.
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Figure 2. An overview depicting the impact of physical exercise on exercise-derived extracellular
vesicles (EVs), emphasizing the molecular processes influenced by their cargo after exercise. EVs can
be released from contracting skeletal muscles or other cell populations, particularly immune and
endothelial cells, and then enter systemic circulation. Depending on their cargo (e.g., proteins, DNA,
and ncRNAs), these EVs target various organs and affect several biological processes, including
inflammation, immune response, cell survival, protein and nucleic acid metabolism, as well as stress
and hormone responses. Notum, palmitoleoyl-protein carboxylesterase; Pctp, phosphatidylcholine
transfer protein; Cyp4b1, cytochrome P450, family 4, subfamily b, polypeptide 1; Dnajb5, DnaJ Heat
Shock Protein Family (Hsp40) Member B5; Hspa5, Heat Shock Protein Family A (Hsp70) Member 5;
Ltb4r2, Leukotriene B4 receptor 2; Alox5, Arachidonate 5-lipoxygenase; Zbtb1, Zinc Finger And BTB
Domain Containing 1; Oxtr, Oxytocin receptor; Dxo, Decapping exoribonuclease.

5. Physiological Relevance and Limitations

Before fully embracing the potential of translating these findings into clinical practice,
it is crucial to evaluate how accurately in vitro models represent real physiological condi-
tions. A key question is whether a tumor growing or developing in vivo will be exposed
to the active EV molecules that demonstrate a suppressive effect on growth, as observed
in vitro.

In vivo, this will depend on a mix of factors, including the degree of vascularization
and perfusion of the tumor, as well as whether the active proteins or metabolites can readily
cross the endothelial barrier and infiltrate the interstitial fluid surrounding the tumor.
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In light of published studies, it is clear that this question cannot be answered. Indeed,
we must consider some possible limitations related to how representative the in vitro
system is, especially if based on 2D monocultures of tumor cells grown on flat plastic
surfaces, of the pathophysiological scenario. For example, in vitro, it is not possible to
analyze some in vivo aspects that could compromise the anti-tumor effect of these exercise-
induced circulating molecules such as tumor vascularization and perfusion, as well as
tissue architecture and tumor microenvironment, including the extracellular matrix, cell-to-
cell contacts, fibroblasts, and other stromal cells associated with the tumor that are absent.
Furthermore, most cell lines employed to date may fail to predict tumor response in vivo
due to their limited ability to provide inter-tumoral and intra-tumoral heterogeneity. Last
but not least, it remains unclear which type of training mode (i.e., resistance training vs.
aerobic training), along with associated volume and intensity, is more effective in altering
EV cargo and circulating factors, which then have suppressive effects on cancer cells.

6. Conclusions and Future Directions

EV cargo can be considered a possible mechanism for the beneficial effects of exercise
on cancer. The limited number of studies available in a relatively new area of exercise
oncology precludes definitive conclusions from being drawn. To date, the results suggest
a possible central role of EVs in spreading exercise-induced active molecules, such as
proteins and ncRNAs, modulating a healthier global condition in cancer patients. By
understanding and exploiting the specific profiles of EVs released during exercise, it might
be possible to create future innovative therapeutic strategies based on exercise mimetics
that deliver these benefits in vivo and/or identify specific molecular targets of drugs for
new oncological therapies.

Our knowledge in this field is still in its early stages, and many crucial questions
remain unanswered. As a result, due to the speculative nature of exercise-derived EVs at
this point, further in vitro and in vivo research is necessary.

In vitro studies could provide insight into the intricate molecular and exercise-induced
regulatory mechanisms that control the release of EVs and their role in regulating cancer
cell behavior, including proliferation, apoptosis, and metastasis. These studies should
also include the application of a 3D assay, co-culture systems, and/or the use of scaffold
mimicking the extracellular matrix, as well as a focus on evaluating whether these EVs can
enhance the effects of chemotherapy, radiation, or immunotherapy. These combination
approaches could lead to more effective and less toxic treatment regimens.

In vivo studies could explore the following: (1) how these EVs alter the immune
landscape, potentially enhancing anti-tumor immunity or reducing immunosuppressive
signals; (2) the optimal exercise regimen for producing beneficial EVs; (3) if the therapeutic
effects of EVs are durable and if any long-term adverse effects emerge; and (4) the potential
toxicity of administering these EVs. Finally, studies including patient-derived xenograft
(PDX) models are recommended to understand the effects of exercise-derived EVs in a
more clinically relevant context, potentially accelerating the translation of research into
human trials.
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