In Silico Clinical Trials (ISCT), i.e., clinical experimental campaigns carried out by means of computer simulations, hold the promise to decrease time and cost for the safety and efficacy assessment of pharmacological treatments, reduce the need for animal and human testing, and enable precision medicine. In this paper we present methods and an algorithm that, by means of extensive computer simulation– based experimental campaigns (ISCT) guided by intelligent search, optimise a pharmacological treatment for an individual patient (precision medicine). We show the effectiveness of our approach on a case study involving a real pharmacological treatment, namely the downregulation phase of a complex clinical protocol for assisted reproduction in humans.

Optimal Personalised Treatment Computation through In Silico Clinical Trials on Patient Digital Twins

Federico Mari;
2020-01-01

Abstract

In Silico Clinical Trials (ISCT), i.e., clinical experimental campaigns carried out by means of computer simulations, hold the promise to decrease time and cost for the safety and efficacy assessment of pharmacological treatments, reduce the need for animal and human testing, and enable precision medicine. In this paper we present methods and an algorithm that, by means of extensive computer simulation– based experimental campaigns (ISCT) guided by intelligent search, optimise a pharmacological treatment for an individual patient (precision medicine). We show the effectiveness of our approach on a case study involving a real pharmacological treatment, namely the downregulation phase of a complex clinical protocol for assisted reproduction in humans.
2020
artificial intelligence
virtual physiological human
in silico clinical trials
simulation
personalised medicine
in silico treatment optimisation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14244/2717
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
social impact