The identification of vaginal fluids in forensic examinations plays an important role in crime scene reconstruction. Molecular detection of vaginal bacterial communities can lead to the correct discrimination of body fluids. These kinds of studies can be performed through multiplex real-time PCR using primers for a specific selection of bacteria. The availability of next-generation sequencing (NGS) protocols provided for the extension of the analysis to evaluate the prokaryotes present in specimens. In this study, DNA was extracted from 18 samples (vaginal, oral, fecal, yoghurt) and analyzed by real-time PCR and NGS. The comparison between the two approaches has demonstrated that the information developed through NGS can augment the more conventional real-time PCR detection of a few key bacterial species to provide a more probative result and the correct identification of vaginal fluid from samples that are more forensically challenged.

Informativeness of NGS Analysis for Vaginal Fluid Identification.

Giampaoli S;Valeriani F;Romano Spica V
2017-01-01

Abstract

The identification of vaginal fluids in forensic examinations plays an important role in crime scene reconstruction. Molecular detection of vaginal bacterial communities can lead to the correct discrimination of body fluids. These kinds of studies can be performed through multiplex real-time PCR using primers for a specific selection of bacteria. The availability of next-generation sequencing (NGS) protocols provided for the extension of the analysis to evaluate the prokaryotes present in specimens. In this study, DNA was extracted from 18 samples (vaginal, oral, fecal, yoghurt) and analyzed by real-time PCR and NGS. The comparison between the two approaches has demonstrated that the information developed through NGS can augment the more conventional real-time PCR detection of a few key bacterial species to provide a more probative result and the correct identification of vaginal fluid from samples that are more forensically challenged.
2017
bacteria
body fluids
forensic science
metabarcoding
mfDNA
multiplex PCR
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14244/3017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
social impact