The identification of rapid methods for the control of recreational water and of aquatic environments with similar characteristics is necessary to provide adequate levels of health safety for users. Molecular techniques have been proposed in recent years as a viable alternative to traditional microbiological methods, as they offer various advantages and are less time consuming than traditional tests. An innovative protocol based on molecular enrichment that allows the identification of low concentrations of Staphylococcus aureus in recreational water has been developed. The method is based on the specific amplification of prokaryotic genomic DNA by the usage of universal primers for 23S rDNA; subsequently, a second amplification step is performed with specifics real time PCR primers and probe. This approach shows sensitivity levels similar to those observed with microbiological tests, with the additional benefits of the specificity typical of nucleic acids techniques. This methodology is easily applicable also to other microbiological parameters, representing an important milestone in hygiene monitoring by the detection of specific pollution indicators.
Molecular enrichment for detection of S. aureus in recreational waters
Valeriani F;Giampaoli S;Gianfranceschi G;Romano Spica V
2012-01-01
Abstract
The identification of rapid methods for the control of recreational water and of aquatic environments with similar characteristics is necessary to provide adequate levels of health safety for users. Molecular techniques have been proposed in recent years as a viable alternative to traditional microbiological methods, as they offer various advantages and are less time consuming than traditional tests. An innovative protocol based on molecular enrichment that allows the identification of low concentrations of Staphylococcus aureus in recreational water has been developed. The method is based on the specific amplification of prokaryotic genomic DNA by the usage of universal primers for 23S rDNA; subsequently, a second amplification step is performed with specifics real time PCR primers and probe. This approach shows sensitivity levels similar to those observed with microbiological tests, with the additional benefits of the specificity typical of nucleic acids techniques. This methodology is easily applicable also to other microbiological parameters, representing an important milestone in hygiene monitoring by the detection of specific pollution indicators.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.