Current immunosuppressive protocols have reduced rejection occurrence in heart transplantation; nevertheless, management of heart transplant recipients is accompanied by major adverse effects, due to drug doses close to toxic range. In allograft rejection, characterized by T-helper 1 (Th1) cell-mediated response, the CXCL10-CXCR3 axis plays a pivotal role in triggering a self-promoting inflammatory loop. Indeed, CXCL10 intragraft production, required for initiation and development of graft failure, supports organ infiltration by Th1 cells. Thus, targeting the CXCL10-CXCR3 axis while avoiding generalized immunosuppression, may be of therapeutic significance. Based on preclinical evidence for immunoregulatory properties of vitamin D receptor agonists, we propose that a less hypercalcemic vitamin D analogue, BXL-01-0029, might have the potential to contribute to rejection management. We investigated the effect of BXL-01-0029 on CXCL10 secretion induced by proinflammatory stimuli, both in human isolated cardiomyocytes (Hfcm) and purified CD4+ T cells. Mycophenolic acid (MPA), the active agent of mycophenolate mofetil, was used for comparison. BXL-01-0029 inhibited IFNgamma and TNFalpha-induced CXCL10 secretion by Hfcm more potently than MPA, impairing cytokine synergy and pathways. BXL-01-0029 reduced also CXCL10 protein secretion and gene expression by CD4+ T cells. Furthermore, BXL-01-0029 did not exert any toxic effect onto both cell types, suggesting its possible use as a dose-reducing agent for conventional immunosuppressive drugs in clinical transplantation.

Immunomodulatory effects of BXL-01-0029, a less hypercalcemic vitamin D analogue, in human cardiomyocytes and T cells

CRESCIOLI C
2009-01-01

Abstract

Current immunosuppressive protocols have reduced rejection occurrence in heart transplantation; nevertheless, management of heart transplant recipients is accompanied by major adverse effects, due to drug doses close to toxic range. In allograft rejection, characterized by T-helper 1 (Th1) cell-mediated response, the CXCL10-CXCR3 axis plays a pivotal role in triggering a self-promoting inflammatory loop. Indeed, CXCL10 intragraft production, required for initiation and development of graft failure, supports organ infiltration by Th1 cells. Thus, targeting the CXCL10-CXCR3 axis while avoiding generalized immunosuppression, may be of therapeutic significance. Based on preclinical evidence for immunoregulatory properties of vitamin D receptor agonists, we propose that a less hypercalcemic vitamin D analogue, BXL-01-0029, might have the potential to contribute to rejection management. We investigated the effect of BXL-01-0029 on CXCL10 secretion induced by proinflammatory stimuli, both in human isolated cardiomyocytes (Hfcm) and purified CD4+ T cells. Mycophenolic acid (MPA), the active agent of mycophenolate mofetil, was used for comparison. BXL-01-0029 inhibited IFNgamma and TNFalpha-induced CXCL10 secretion by Hfcm more potently than MPA, impairing cytokine synergy and pathways. BXL-01-0029 reduced also CXCL10 protein secretion and gene expression by CD4+ T cells. Furthermore, BXL-01-0029 did not exert any toxic effect onto both cell types, suggesting its possible use as a dose-reducing agent for conventional immunosuppressive drugs in clinical transplantation.
2009
Heart transplantation
CXCL10
Immunosuppression
Vitamin D analogue
Mycophenolic acid
File in questo prodotto:
File Dimensione Formato  
sottili et al exp cell res 2009.pdf

non disponibili

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 850.28 kB
Formato Adobe PDF
850.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14244/3529
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
social impact