The effects of NCX 4050, a drug belonging to a new class of NO donors, was investigated in isolated preparations of human and rabbit corpus cavernosum (CC) and in human foetal corpora cavernosa (hfCC) smooth muscle cells. In strips of rabbit CC, NCX 4050 (0.001-100 microM) induced a concentration-dependent relaxation which was influenced neither by Nw-nitro-l-arginine-methyl-ester (l-NAME; 100 microm) nor by endothelium deprivation. The NCX 4050-induced relaxation was significantly reduced by the guanylate cyclase inhibitor 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 microm) and enhanced by a specific phosphodiesterase 5 inhibitor, sildenafil (300 nm). Moreover, NCX 4050 (0.01-1 microm), induced a concentration-dependent potentiation of the relaxant response induced by electrical field stimulation (EFS) in rabbit preparations pre-treated with guanethidine and indomethacin. The relaxant effect of NCX 4050 was similar to that obtained by increasing concentrations (0.001-100 microm) of sodium nitroprusside (SNP) in either rabbit or human preparations. To further investigate the activity of NCX 4050 on human corpora cavernosa, we exposed cultured hfCC smooth muscle cells to increasing concentrations of NCX 4050 and SNP. We found that both compounds dose-dependently reduced cell proliferation. The antiproliferative effect of all the concentration tested of NCX 4050 was completely blocked by ODQ (1 microm). These results suggest that in rabbit and human corpora cavernosa NCX 4050 acts by activating guanylate cyclase activity, induces smooth muscle relaxation and quiescence. Our results provide a rationale for a possible future use of NCX 4050 in the pharmacotherapy of erectile dysfunction linked to an impaired release of NO from the endothelium.

Effects of NCX 4050, a new NO donor, in rabbit and human corpus cavernosum

Crescioli C;
2003-01-01

Abstract

The effects of NCX 4050, a drug belonging to a new class of NO donors, was investigated in isolated preparations of human and rabbit corpus cavernosum (CC) and in human foetal corpora cavernosa (hfCC) smooth muscle cells. In strips of rabbit CC, NCX 4050 (0.001-100 microM) induced a concentration-dependent relaxation which was influenced neither by Nw-nitro-l-arginine-methyl-ester (l-NAME; 100 microm) nor by endothelium deprivation. The NCX 4050-induced relaxation was significantly reduced by the guanylate cyclase inhibitor 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 microm) and enhanced by a specific phosphodiesterase 5 inhibitor, sildenafil (300 nm). Moreover, NCX 4050 (0.01-1 microm), induced a concentration-dependent potentiation of the relaxant response induced by electrical field stimulation (EFS) in rabbit preparations pre-treated with guanethidine and indomethacin. The relaxant effect of NCX 4050 was similar to that obtained by increasing concentrations (0.001-100 microm) of sodium nitroprusside (SNP) in either rabbit or human preparations. To further investigate the activity of NCX 4050 on human corpora cavernosa, we exposed cultured hfCC smooth muscle cells to increasing concentrations of NCX 4050 and SNP. We found that both compounds dose-dependently reduced cell proliferation. The antiproliferative effect of all the concentration tested of NCX 4050 was completely blocked by ODQ (1 microm). These results suggest that in rabbit and human corpora cavernosa NCX 4050 acts by activating guanylate cyclase activity, induces smooth muscle relaxation and quiescence. Our results provide a rationale for a possible future use of NCX 4050 in the pharmacotherapy of erectile dysfunction linked to an impaired release of NO from the endothelium.
2003
3'
5'-Cyclic-GMP Phosphodiesterases
Animals
Anti-Inflammatory Agents
Non-Steroidal
pharmacology
Cells
Cultured
Cyclic Nucleotide Phosphodiesterases
Type 5
Endothelium
Vascular
metabolism
Enzyme Activation
Enzyme Inhibitors
pharmacology
Guanylate Cyclase
antagonists /&/ inhibitors
Humans
Male
Muscle Relaxation
drug effects
Muscle
Smooth
drug effects
Nitric Oxide Donors
pharmacology
Nitric Oxide Synthase
metabolism
Nitric Oxide
physiology
Oxadiazoles
pharmacology
Penile Erection
Penis
drug effects
Phosphodiesterase Inhibitors
pharmacology
Phosphoric Diester Hydrolases
metabolism
Piperazines
pharmacology
Purines
Quinoxalines
pharmacology
Rabbits
Sulfones
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14244/3537
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
social impact