Secretin plays a key role in the regulation of normal cholangiocyte physiology via secretin receptor (SCTR). SCTR expression is upregulated during extrahepatic cholestasis induced by bile duct ligation and closely associated with cholangiocyte proliferative responses. Although well studied in normal cholangiocytes, the role of secretin and the expression of SCTR in the regulation of cholangiocarcinoma proliferation are unknown. In vitro, secretin (10(-7) M) displayed differential effects on normal cholangiocyte [H-69 and human intrahepatic biliary epithelial cell line (HIBEpiC)] and cholangiocarcinoma (Mz-ChA-1, HuH-28, TFK-1, SG231, CCLP1 and HuCC-T1) cell lines as such secretin is mitogenic for normal cholangiocytes and antiproliferative for cholangiocarcinoma. As expected in normal cholangiocytes (HIBEpiC), secretin increased intracellular cyclic adenosine monophosphate (cAMP) levels. However, the effect of secretin on intracellular cAMP levels was suppressed in MzChA-1 cells. Secretin-stimulated intracellular cAMP levels in Mz-ChA-1 were restored by pretreatment with pertussis toxin, suggesting that the receptor coupled to G alpha(i), rather than G alpha(s). SCTR expression was found to be downregulated in 4 of the 6 cholangiocarcinoma cell lines evaluated and in human cholangiocarcinoma biopsy samples. In vivo, secretin significantly inhibited the tumor size and more than doubled tumor latency, which was associated with a decrease in proliferating cell nuclear antigen and an increase in cleaved-caspase 3 expression levels. Our results demonstrate that secretin and/or the modulation of SCTR expression might have potential as a therapeutic tool in the treatment of cholangiocarcinoma.

Secretin inhibits cholangiocarcinoma growth via dysregulation of the cAMP-dependent signaling mechanisms of secretin receptor

FRANCHITTO, Antonio;Guido Carpino;
2010-01-01

Abstract

Secretin plays a key role in the regulation of normal cholangiocyte physiology via secretin receptor (SCTR). SCTR expression is upregulated during extrahepatic cholestasis induced by bile duct ligation and closely associated with cholangiocyte proliferative responses. Although well studied in normal cholangiocytes, the role of secretin and the expression of SCTR in the regulation of cholangiocarcinoma proliferation are unknown. In vitro, secretin (10(-7) M) displayed differential effects on normal cholangiocyte [H-69 and human intrahepatic biliary epithelial cell line (HIBEpiC)] and cholangiocarcinoma (Mz-ChA-1, HuH-28, TFK-1, SG231, CCLP1 and HuCC-T1) cell lines as such secretin is mitogenic for normal cholangiocytes and antiproliferative for cholangiocarcinoma. As expected in normal cholangiocytes (HIBEpiC), secretin increased intracellular cyclic adenosine monophosphate (cAMP) levels. However, the effect of secretin on intracellular cAMP levels was suppressed in MzChA-1 cells. Secretin-stimulated intracellular cAMP levels in Mz-ChA-1 were restored by pretreatment with pertussis toxin, suggesting that the receptor coupled to G alpha(i), rather than G alpha(s). SCTR expression was found to be downregulated in 4 of the 6 cholangiocarcinoma cell lines evaluated and in human cholangiocarcinoma biopsy samples. In vivo, secretin significantly inhibited the tumor size and more than doubled tumor latency, which was associated with a decrease in proliferating cell nuclear antigen and an increase in cleaved-caspase 3 expression levels. Our results demonstrate that secretin and/or the modulation of SCTR expression might have potential as a therapeutic tool in the treatment of cholangiocarcinoma.
2010
xenograft
secretin receptor
secretin
cholangiocarcinoma
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14244/4400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
social impact