: The brain can be seen as a predictive system continuously computing prior information to guess posterior probabilities minimizing sources of uncertainty. To test this Bayesian view of the brain, event-related potentials (ERP) methods have been used focusing on the well-known P3 component, traditionally associated with decision-making processes and sources of uncertainty regarding target probability. Another ERP component linked with decision-making is the prefrontal P2 (pP2) component, which has never been considered within the Bayesian framework. To test which source of uncertainty could be associated with the pP2, uncertainty induced by target probability and stimulus-response (S/R) mapping were modulated in three visuomotor tasks. Results showed that the pP2 had the largest amplitude in the task with the largest uncertainty regarding the S/R mapping and degraded as the S/R mapping became more predictable. The P3 was maximal in the tasks with larger uncertainty regarding the target probability. While we confirmed the P3 association with target probability, we extended our knowledge on the pP2 associating it with S/R mapping uncertainty. This component, which has been previously localized within the anterior insular cortex, may minimize S/R mapping uncertainty allowing response-related evidence accumulation and comparing current events with internal representations to extract action-related probabilities.

The brain can be seen as a predictive system continuously computing prior information to guess posterior probabilities minimizing sources of uncertainty. To test this Bayesian view of the brain, event-related potentials (ERP) methods have been used focusing on the well-known P3 component, traditionally associated with decision-making processes and sources of uncertainty regarding target probability. Another ERP component linked with decision-making is the prefrontal P2 (pP2) component, which has never been considered within the Bayesian framework. To test which source of uncertainty could be associated with the pP2, uncertainty induced by target probability and stimulus-response (S/R) mapping were modulated in three visuomotor tasks. Results showed that the pP2 had the largest amplitude in the task with the largest uncertainty regarding the S/R mapping and degraded as the S/R mapping became more predictable. The P3 was maximal in the tasks with larger uncertainty regarding the target probability. While we confirmed the P3 association with target probability, we extended our knowledge on the pP2 associating it with S/R mapping uncertainty. This component, which has been previously localized within the anterior insular cortex, may minimize S/R mapping uncertainty allowing response-related evidence accumulation and comparing current events with internal representations to extract action-related probabilities.

Bayesian interpretation of the prefrontal P2 ERP component based on stimulus/response mapping uncertainty

Aydin M;Lucia S;Casella A.;Di Bello B;Di Russo F
2024-01-01

Abstract

The brain can be seen as a predictive system continuously computing prior information to guess posterior probabilities minimizing sources of uncertainty. To test this Bayesian view of the brain, event-related potentials (ERP) methods have been used focusing on the well-known P3 component, traditionally associated with decision-making processes and sources of uncertainty regarding target probability. Another ERP component linked with decision-making is the prefrontal P2 (pP2) component, which has never been considered within the Bayesian framework. To test which source of uncertainty could be associated with the pP2, uncertainty induced by target probability and stimulus-response (S/R) mapping were modulated in three visuomotor tasks. Results showed that the pP2 had the largest amplitude in the task with the largest uncertainty regarding the S/R mapping and degraded as the S/R mapping became more predictable. The P3 was maximal in the tasks with larger uncertainty regarding the target probability. While we confirmed the P3 association with target probability, we extended our knowledge on the pP2 associating it with S/R mapping uncertainty. This component, which has been previously localized within the anterior insular cortex, may minimize S/R mapping uncertainty allowing response-related evidence accumulation and comparing current events with internal representations to extract action-related probabilities.
2024
: The brain can be seen as a predictive system continuously computing prior information to guess posterior probabilities minimizing sources of uncertainty. To test this Bayesian view of the brain, event-related potentials (ERP) methods have been used focusing on the well-known P3 component, traditionally associated with decision-making processes and sources of uncertainty regarding target probability. Another ERP component linked with decision-making is the prefrontal P2 (pP2) component, which has never been considered within the Bayesian framework. To test which source of uncertainty could be associated with the pP2, uncertainty induced by target probability and stimulus-response (S/R) mapping were modulated in three visuomotor tasks. Results showed that the pP2 had the largest amplitude in the task with the largest uncertainty regarding the S/R mapping and degraded as the S/R mapping became more predictable. The P3 was maximal in the tasks with larger uncertainty regarding the target probability. While we confirmed the P3 association with target probability, we extended our knowledge on the pP2 associating it with S/R mapping uncertainty. This component, which has been previously localized within the anterior insular cortex, may minimize S/R mapping uncertainty allowing response-related evidence accumulation and comparing current events with internal representations to extract action-related probabilities.
Bayesian framework
ERP
S/R mapping
pP2
File in questo prodotto:
File Dimensione Formato  
Aydin et al 2024 Int J Psychophysiology (CNV post).pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.89 MB
Formato Adobe PDF
3.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14244/5211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact