Background: Although enhancing change of direction (COD) performance is a crucial factor for improving athletic performance in many sports, few studies have explored its effective methods. Research question: This study aimed to investigate the effects of inclined-adaptive footwear (IAF) on force-time characteristics during a COD task. Methods: Thirteen male team sport athletes were randomly assigned to wear IAF or footwear without adaptive technology to perform a COD60° task at their best effort. A three-dimensional force plate was used to obtain the force-time curve and related parameters at the turning step (plant foot). Results: IAF led to a significantly higher resultant ground reaction force (GRF), horizontal GRF, vertical GRF, and horizontal/vertical ratio during the braking phase, followed by a significantly shorter contact time and higher resultant horizontal GRF and vertical GRF during the propulsive phase. Significance: This indicated that a greater GRF output, redistributed GRF, and shorter contact time occurred with the IAF. Therefore, IAF has the potential to enhance COD performance for sports involving multi-directional footwork and contribute to the development of new functional footwear

Effects of a novel inclined-adaptive footwear on change-of-direction performance in male athletes

Tessitore A;
2022-01-01

Abstract

Background: Although enhancing change of direction (COD) performance is a crucial factor for improving athletic performance in many sports, few studies have explored its effective methods. Research question: This study aimed to investigate the effects of inclined-adaptive footwear (IAF) on force-time characteristics during a COD task. Methods: Thirteen male team sport athletes were randomly assigned to wear IAF or footwear without adaptive technology to perform a COD60° task at their best effort. A three-dimensional force plate was used to obtain the force-time curve and related parameters at the turning step (plant foot). Results: IAF led to a significantly higher resultant ground reaction force (GRF), horizontal GRF, vertical GRF, and horizontal/vertical ratio during the braking phase, followed by a significantly shorter contact time and higher resultant horizontal GRF and vertical GRF during the propulsive phase. Significance: This indicated that a greater GRF output, redistributed GRF, and shorter contact time occurred with the IAF. Therefore, IAF has the potential to enhance COD performance for sports involving multi-directional footwork and contribute to the development of new functional footwear
2022
Cutting movement
GRF distribution
Sneakers
Wedge shoe
Team sports
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0966636222000820-main.pdf

non disponibili

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14244/6115
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact