Predicting and avoiding an injury is a challenging task. By exploiting data mining techniques, this paper aims to identify existing relationships between modifiable and non-modifiable risk factors, with the final goal of predicting non-contact injuries. Twenty-three young soccer players were monitored during an entire season, with a total of fifty-seven non-contact injuries identified. Anthropometric data were collected, and the maturity offset was calculated for each player. To quantify internal training/match load and recovery status of the players, we daily employed the session-RPE method and the total quality recovery (TQR) scale. Cumulative workloads and the acute: chronic workload ratio (ACWR) were calculated. To explore the relationship between the various risk factors and the onset of non-contact injuries, we performed a classification tree analysis. The classification tree model exhibited an acceptable discrimination (AUC=0.76), after receiver operating characteristic curve (ROC) analysis. A low state of recovery, a rapid increase in the training load, cumulative workload, and maturity offset were recognized by the data mining algorithm as the most important injury risk factors. © 2021 M. Mandorino et al., published by Sciendo.

A Data Mining Approach to Predict Non-Contact Injuries in Young Soccer Players

Tessitore A
2021-01-01

Abstract

Predicting and avoiding an injury is a challenging task. By exploiting data mining techniques, this paper aims to identify existing relationships between modifiable and non-modifiable risk factors, with the final goal of predicting non-contact injuries. Twenty-three young soccer players were monitored during an entire season, with a total of fifty-seven non-contact injuries identified. Anthropometric data were collected, and the maturity offset was calculated for each player. To quantify internal training/match load and recovery status of the players, we daily employed the session-RPE method and the total quality recovery (TQR) scale. Cumulative workloads and the acute: chronic workload ratio (ACWR) were calculated. To explore the relationship between the various risk factors and the onset of non-contact injuries, we performed a classification tree analysis. The classification tree model exhibited an acceptable discrimination (AUC=0.76), after receiver operating characteristic curve (ROC) analysis. A low state of recovery, a rapid increase in the training load, cumulative workload, and maturity offset were recognized by the data mining algorithm as the most important injury risk factors. © 2021 M. Mandorino et al., published by Sciendo.
2021
DATA MINING
INJURY
PREDICTION
TRAINING LOAD
YOUTH SOCCER
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14244/6127
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
social impact