Purpose: Pedalling cadence influences respiratory frequency (fR) during exercise, with group III/IV muscle afferents possibly mediating its effect. However, it is unclear how exercise intensity affects the link between cadence and fR. We aimed to test the hypothesis that the effect of cadence on fR is moderated by exercise intensity, with interest in the underlying mechanisms.Methods: Ten male cyclists performed a preliminary ramp incremental test and three sinusoidal experimental tests on separate visits. The experimental tests consisted of 16 min of sinusoidal variations in cadence between 115 and 55 rpm (sinusoidal period of 4 min) performed during passive exercise (PE), moderate exercise (ME) and heavy exercise (HE). The amplitude (A) and phase lag (φ) of the dependent variables were calculated.Results: During PE, fR changed in proportion to variations in cadence (r = 0.85, P < 0.001; A = 3.9 ± 1.4 breaths·min-1; φ = - 5.3 ± 13.9 degrees). Conversely, the effect of cadence on fR was reduced during ME (r = 0.73, P < 0.001; A = 2.6 ± 1.3 breaths·min-1; φ = - 25.4 ± 26.3 degrees) and even more reduced during HE (r = 0.26, P < 0.001; A = 1.8 ± 1.0 breaths·min-1; φ = - 70.1 ± 44.5 degrees). No entrainment was found in any of the sinusoidal tests.Conclusion: The effect of pedalling cadence on fR is moderated by exercise intensity-it decreases with the increase in work rate-and seems to be mediated primarily by group III/IV muscle afferents, at least during passive exercise.

The effect of pedalling cadence on respiratory frequency: passive vs. active exercise of different intensities

Girardi M;Nicolo' A;Bazzucchi I;Felici F;Sacchetti M.
2021-01-01

Abstract

Purpose: Pedalling cadence influences respiratory frequency (fR) during exercise, with group III/IV muscle afferents possibly mediating its effect. However, it is unclear how exercise intensity affects the link between cadence and fR. We aimed to test the hypothesis that the effect of cadence on fR is moderated by exercise intensity, with interest in the underlying mechanisms.Methods: Ten male cyclists performed a preliminary ramp incremental test and three sinusoidal experimental tests on separate visits. The experimental tests consisted of 16 min of sinusoidal variations in cadence between 115 and 55 rpm (sinusoidal period of 4 min) performed during passive exercise (PE), moderate exercise (ME) and heavy exercise (HE). The amplitude (A) and phase lag (φ) of the dependent variables were calculated.Results: During PE, fR changed in proportion to variations in cadence (r = 0.85, P < 0.001; A = 3.9 ± 1.4 breaths·min-1; φ = - 5.3 ± 13.9 degrees). Conversely, the effect of cadence on fR was reduced during ME (r = 0.73, P < 0.001; A = 2.6 ± 1.3 breaths·min-1; φ = - 25.4 ± 26.3 degrees) and even more reduced during HE (r = 0.26, P < 0.001; A = 1.8 ± 1.0 breaths·min-1; φ = - 70.1 ± 44.5 degrees). No entrainment was found in any of the sinusoidal tests.Conclusion: The effect of pedalling cadence on fR is moderated by exercise intensity-it decreases with the increase in work rate-and seems to be mediated primarily by group III/IV muscle afferents, at least during passive exercise.
2021
Cycling
Differential control
Muscle afferent feedback
Sinusoidal exercise
Ventilatory control
File in questo prodotto:
File Dimensione Formato  
Girardi EJAP 2021 The effect of pedalling cadence on respiratory frequency passive vs. active exercise of different intensities.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14244/7639
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
social impact