Background: Many human activities release harmful substances, contaminating the air, water, and soil. Since exposure to environmental pollutants is currently unavoidable, it is important to verify how these compounds may influence individual immune responses to vaccines. Methods: This review was conducted in accordance with the PRISMA statement. The protocol was registered on the PROSPERO platform with the following ID: CRD42024582592. We evaluated all observational, semi-experimental, and experimental studies written in both Italian and English that reported possible effects of exposure to environmental pollutants on the production of vaccine-induced antibodies. Results: Forty-two studies were included. The effects of pollutants were examined mainly in terms of antibody production in relation to mumps, measles and rubella, diphtheria and tetanus, hepatitis A and B, Haemophilus influenzae type B, influenza, tuberculosis, pertussis, Japanese encephalitis, poliomyelitis, and COVID-19 vaccines. Perfluorinated compounds were the most studied pollutants. Conclusions: Correlations between exposure to pollutants and reductions in antibody production were found in quite all the selected studies, suggesting that pollution control policies could contribute to increase the efficacy of vaccination campaigns. However, the heterogeneity of the examined studies did not allow us to perform a meta-analysis, and the literature on each type of vaccine or pollutant is still too limited to generate robust evidence. In order to confirm the findings of the present systematic review, and in the perspective of establishing possible exposure limit values for each type of pollutant, further research in this field is required.

Exposure to Pollutants and Vaccines’ Effectiveness: A Systematic Review

Valeriani F.;
2024-01-01

Abstract

Background: Many human activities release harmful substances, contaminating the air, water, and soil. Since exposure to environmental pollutants is currently unavoidable, it is important to verify how these compounds may influence individual immune responses to vaccines. Methods: This review was conducted in accordance with the PRISMA statement. The protocol was registered on the PROSPERO platform with the following ID: CRD42024582592. We evaluated all observational, semi-experimental, and experimental studies written in both Italian and English that reported possible effects of exposure to environmental pollutants on the production of vaccine-induced antibodies. Results: Forty-two studies were included. The effects of pollutants were examined mainly in terms of antibody production in relation to mumps, measles and rubella, diphtheria and tetanus, hepatitis A and B, Haemophilus influenzae type B, influenza, tuberculosis, pertussis, Japanese encephalitis, poliomyelitis, and COVID-19 vaccines. Perfluorinated compounds were the most studied pollutants. Conclusions: Correlations between exposure to pollutants and reductions in antibody production were found in quite all the selected studies, suggesting that pollution control policies could contribute to increase the efficacy of vaccination campaigns. However, the heterogeneity of the examined studies did not allow us to perform a meta-analysis, and the literature on each type of vaccine or pollutant is still too limited to generate robust evidence. In order to confirm the findings of the present systematic review, and in the perspective of establishing possible exposure limit values for each type of pollutant, further research in this field is required.
2024
environmental pollution
human health
immunization
infectious disease prevention
systematic review
toxics
vaccine
File in questo prodotto:
File Dimensione Formato  
vaccines-12-01252.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 793.3 kB
Formato Adobe PDF
793.3 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14244/9263
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact